Skip to content

United Kingdom

Agriculture and Horticulture

Agriculture and horticulture in numbers

Europe

Agriculture accounts for only a small part of gross domestic production (GDP) in Europe, and it is considered that the overall vulnerability of the European economy to changes that affect agriculture is low (16). However, agriculture is much more important in terms of area occupied (farmland and forest land cover approximately 90 % of the EU's land surface), and rural population and income (17).

UK

Agriculture accounts for 72% of land use in the United Kingdom and provides employment for close to half a million people. Most of the arable cropland is situated in the lowlands of southeast Great Britain, which have relatively warm temperatures and lower rainfall (31). The remaining quarter is made up of urban (14%), forest and woodland (12%) and inland water (1%) (1).


Read more

Vulnerabilities UK - Climate change not main driver

Many studies stress that climate change is not the main driver of changes in agriculture: economic and social factors are more important. The climate change impacts can be subdivided into wetter winters, drier summers, higher temperatures, and higher CO2 concentrations.


Read more

Vulnerabilities UK - Wetter winters

The climate change scenarios suggest that wetter winters will occur, increasing the risk of flooding across the region. Flooding of agricultural land from rivers or high soil moisture can cause a number of problems on agricultural land.


Read more

Vulnerabilities UK - Drier summers

Crop growth is affected by several aspects of climate change. Whether the net effect of all these aspects is negative or positive depends on the size of change of these aspects and the vulnerability of a specific crop for these changes (8).


Read more

Vulnerabilities UK - Higher temperatures

Higher winter temperatures may negatively affect cereal and fruit production because plants and trees need low winter temperature for flowering and growth. Higher winter temperatures will also stimulate pests and diseases. Warmer summers may become a risk for livestock.


Read more

Vulnerabilities UK - Higher CO2 concentrations

On average, the productivity of vegetation in Great Britain by the end of the century is predicted to decline under a high-end scenario of climate change (RCP 8.5) alone, but to increase when the physiological (fertilizing) effect of CO2 is included. Arable production will probably increase to the west and north. In the southeast, arable production will switch to grassland livestock farming, however. This is due predominantly to a deleterious effect of climate drying on the productivity of arable farming. This shift away from arable farming in the southeast can be prevented with irrigation. However, the estimated demand for irrigation of up to 200 mm per growing season in some regions, is comparable to the annual water availability in those regions, implying not only a redistribution of water between seasons, but a large-scale geographical redistribution of water across Great Britain may be required to maintain arable farming (31).

The exact impact of drought may depend on the level of ambient CO2, which by 2080 is expected to reach concentrations approximately double today’s levels. Elevated CO2 stimulates plant growth and may approximately compensate for reduced yields caused by elevated temperatures.


Read more

Vulnerabilities UK - Regional differences

West and Gawith (14) present an overview of expected climate change impacts on several activities for different regions of the United Kingdom, based on several regional scoping studies. The results for agriculture and horticulture are listed below.


Read more

Benefits and opportunities UK

Research results indicate that the balance for UK agriculture is much more towards areas of increased rather than decreased cropland suitability due to climate change (26).

Agriculture may benefit from climate change in several ways, such as higher crop growth through changes in the growing season, and more diversification through the introduction of new crops. Horticulture may benefit from reduced heating costs for glasshouse crops (5). In general, a warmer climate will assist in increasing the diversity of crops. This would leave farmers less dependent on one commodity and therefore more insulated against the market (6).


Read more

The world food system in 2080

The world food system in the twenty-first century has been assessed, under various future scenarios of population, economic growth and climate change, addressing the questions: what are the likely impacts of climate change on the world’s agricultural resources? How do climate impacts compare to socioeconomic pressures over this century? Where and how do significant interactions arise? According to the authors, a fully coherent, unified data and modelling system has been used for the first time (25).


Read more

Vulnerabilities Europe - Climate change not main driver

Socio-economic factors and technological developments

Climate change is only one driver among many that will shape agriculture and rural areas in future decades. Socio-economic factors and technological developments will need to be considered alongside agro-climatic changes to determine future trends in the sector (17).


Read more

Adaptation strategies

Climate changes will happen gradually, giving farmers time to adapt. Good management should enable adaptations to occur with the minimum of stress. When compared with other drivers of change which will impact land use in the next 50 years, climate change is probably of lower importance than the impacts of globalisation, technology and policy (8).


Read more

Adaptation strategies - The world food system in 2080

The world food system in the twenty-first century has been assessed, under various future scenarios of population, economic growth and climate change. Results suggest that socioeconomic development over this century will greatly alter production, trade, distribution and consumption of food products worldwide, as a consequence of population growth, economic growth, and diet changes in developing countries. Climate change will additionally modify agricultural activities, probably increasing any gaps between developing and developed countries. Adaptation strategies, both on-farm and via market mechanisms, will be important contributors to limiting the severity of impacts (25).


Read more

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for the United Kingdom.

  1. Department of Energy and Climate Change of the United Kingdom (2009)
  2. Anderson et al. (2003)
  3. Land Use Consultants, CAG Consultants and SQW Limited (2003b)
  4. Farrar and Vaze (2000)
  5. C-CLIF and GEMRU (2003)
  6. Kerr et al. (1999)
  7. Department of Energy and Climate Change of the United Kingdom (2009)
  8. Farrar and Vaze(2000)
  9. Anderson et al. (2003), based on: Dossier of Chaos produced by the National Farmer's Union (NFU, 2000).
  10. Holman et al. (2002)
  11. Kersey et al. (2000)
  12. Holman et al. (2007)
  13. Richter and Semenov (2005)
  14. West and Gawith (2005)
  15. Environment Agency (1999), in: Kersey et al. (2000)
  16. EEA (2006), in: EEA, JRC and WHO (2008)
  17. EEA, JRC and WHO (2008)
  18. EEA (2003)
  19. Rounsevell et al. (2005)
  20. UN (2004), in: Alcamo et al. (2007)
  21. Ewert et al. (2005), in: Alcamo et al. (2007)
  22. Van Meijl et al. (2006), in: Alcamo et al. (2007)
  23. JNCC (2007), in: Anderson (ed.) (2007)
  24. European Commission (2006), in: Anderson (ed.) (2007)
  25. Fischer et al. (2005)
  26. Moriondo et al. (2010), in: Met Office (2010)
  27. Ciscar et al. (2009); Iglesias et al. (2009), both in: Met Office (2010)
  28. Semenov (2009), in: Met Office (2010)
  29. Jones et al. (2019)
  30. Wittmann et al. (2000), in: Jones et al. (2019)
  31. Ritchie et al. (2019)
  32. Harkness et al. (2020)

Share this article: