Austria Austria Austria Austria

Tourism Austria

Tourism in numbers - Europe

Europe is the most important tourist region in the world. According to UNWTO, in 2006 nearly 55% of all international tourist arrivals (461 million) were on the “old continent”.Southern Europe and the Mediterranean region are the favourite holiday destinations in Europe. According to UNWTO, in 2006 about 165 million tourists visited these regions (25).

At present, the predominant summer tourist flows in Europe are from north to south, to the coastal zone. However, coastal and mountain tourism are the segments that are most vulnerable to climate change, and the Mediterranean region is the world's most popular holiday region: it attracts some 120 million visitors from northern Europe each year, the largest international flow of tourists on the globe, and their spending is in excess of EUR 100 billion (23).

A forecast of international tourist arrivals in Europe for 2030 expects an average annual growth of 2.4% between 2005 and 2015 and 2.3% between 2015 and 2030 (30).

Tourism in numbers - Austria

The direct contribution of the tourism industry to Austrian GDP is 4.9%; with indirect effects it increases to 15.4%. The winter season has a share of 50% of the 125 million annual overnight stays (28). In 2006, Austria was in a respectable ninth place in terms of international tourist arrivals. Less surprising is the proportion of foreigners making overnight stays, which is very high at over 72% (25).

For Austria, an average annual growth rate of international tourist arrivals is expected of 1.5% between 2005 and 2015 and 1.0% between 2015 and 2030 (30).

Tourism in numbers - The Alps

The Alps are also among the most visited regions. About 60-80 million people visit the Alps each year as tourists. Tourism activities in the Alps generate close to EUR 50 billion in annual turnover and provide 10-12% of the jobs (5,9). There are over 600 ski resorts and 10,000 ski installations in the Alps. France, Switzerland, Austria and Italy provide over 85% of Europe’s skiing area. France has the highest winter season turnover of all these four countries (5,10).

19 % of the area faces increasing economic problems. For 18 % of the area, the economy, settlements and cultural heritage are breaking down as people leave (12). This is particularly the case in southern France, some parts of Italy (e.g. Piemont) and Slovenia. Only tourism can reverse this trend but the number of tourists visiting the Alps has either been constant or decreasing since the 1980s. In these areas forests move into grassland and the area becomes less attractive for tourism (13).

Vulnerabilities – In general

There are four broad categories of climate change impacts that will affect tourism destinations, their competitiveness and sustainability (24):

  • Direct climatic impacts
  • Indirect environmental change impacts. Changes in water availability, biodiversity loss, reduced landscape aesthetic, altered agricultural production (e.g., wine tourism), increased natural hazards, coastal erosion and inundation, damage to infrastructure and the increasing incidence of vector-borne diseases will all impact tourism to varying degrees.
  • Impacts of mitigation policies on tourist mobility.Policies that seek to reduce GHG emissions will lead to an increase in transport costs and may foster environmental attitudes that lead tourists to change their travel patterns.
  • Indirect societal change impacts. Climate change is thought to pose a risk to future economic growth and to the political stability of some nations. Climate change is considered a national and international security risk that will steadily intensify, particularly under greater warming scenarios. Tourists, particularly international tourists, are averse to political instability and social unrest.

Vulnerabilities - Trends in the past

It was the winters with little snow at the end of the 1980s (1987/88–1989/90) that caused a stir (1,8). The big difference to earlier periods with little snow was that the capital intensity of ski tourism had considerably increased. The snow shortage at the end of the 1980s left a clear mark on the tourist trade. The earnings of cable-way companies decreased by 20% compared to the ‘normal’ winter of 1986/1987. Particularly affected were smaller companies at lower and medium altitudes (1).


Due to changing climate conditions, the overall number of lifts in the Alps is slightly decreasing and in areas at low altitudes ski-resorts are already closed or will be closed in the near future (11).

A number of companies in regions above 1700 m achieved good and even first-rate results due to the lack of snow at lower and medium altitudes. The slump in the hotel and holiday-apartment trade was less pronounced, as they also accommodate non-skiers. Hotel rooms and holiday apartments also tend to be booked quite a long time in advance. The question does arise, however, as to how long tourists will remain loyal to a location and keep returning to it if they are repeatedly confronted with inadequate snow conditions (1).

The experience acquired by Swiss ski resorts shows that a ski resort can be considered snow-reliable if, in 7 out of 10 winters, skiing is possible on at least 100 days between December 1 and April 15 (2). It is estimated that the snowline, as well as the line of natural snow-reliability, will rise by 150 m with 1°C warming (6). On this basis, climate change could result in a 150 m, 300 m and 600 m increase in the altitude of the natural snow-reliability for 1, 2 and 4°C of warming (5).

The duration of snow cover is expected to decrease by several weeks for each °C of temperature increase in the Alps region at middle elevations (14). At the most sensitive elevation in the Austrian Alps (600 m in winter and 1400 m in spring) and with no snowmaking adaptation considered, a 1°C rise leads to four fewer weeks of skiing days in winter and six fewer weeks in spring (15). A 2°C warming with no precipitation change would reduce the seasonal snow cover at a Swiss Alpine site by 50 days/yr, and with a 50% increase in precipitation by 30 days (16).

Vulnerabilities - Projections for the future

Due to the expected negative effects on winter tourism, the Austrian tourism industry will be one of the overall losers from climate change (25).

The reliability of the snow cover in many ski areas will be affected. At the moment, there is reliable snow at altitudes above about 1,200 metres. This critical boundary could increase to 1,500 m by 2030. In Austria there are winners as well as losers from climate change: in this case, the winners are the ski areas with reliable snow, such as Obertauern and Ischgl, as well as the Ötztal and Stubaital with their glaciers. Relatively low-lying areas (e.g. the “Salzburger Sportwelt” or the “Tiroler Zugspitzarena”) may become less attractive as a result of deteriorating winter sports conditions. A shifting of tourist flows within Austria is probable consequently (25).

Higher temperatures will mean that summer tourism in Austria will increase in attractiveness: the mountain and lakes landscapes offer an alternative to the hot Mediterranean destinations. The opportunities for walking holidays and tourism in spas and health resorts will improve (25).


A recent Europe-wide assessment has identified increasing losses in winter tourism due to reduced snow cover and the increased exposure of settlements and infrastructure to natural hazards as the primary vulnerabilities to climate change in the Alps (5).

The Alps

Under present climate conditions, 609 out of the 666 (or 91%) Alpine ski areas in  Austria, France, Germany, Italy, and Switzerland can be considered as naturally snow-reliable. The remaining 9% are already operating under marginal conditions. The number of naturally snow-reliable areas would drop to 500 under 1°C, to 404 under 2°C, and to 202 under a 4°C warming of climate. This is the first systematic cross-country analysis of snow-reliability under climate change for the Alps and covers more than 80% of the skiing domain (5).

Sensitivity to climate change varies markedly among the Alpine countries. Germany is most sensitive, with only a 1°C warming leading to a 60% decrease (relative to present) in the number of naturally snow-reliable ski areas. Practically none of the ski areas in Germany will be left naturally snow-reliable under a 4°C warming. Switzerland, meanwhile, is the least sensitive of the five countries, with a 1°C warming leading to only a 10% decrease, while a 4°C warming would lead to a 50% decrease (relative to present) in the number of naturally snow-reliable areas. There will also be “winners” and “losers”, both in terms of regions and in terms of the ski areas themselves, with low-lying ski areas being considerably more vulnerable than areas with high altitudinal range (5).

Many of the Austrian ski areas have low base points. With climate change the natural snow-reliability of Austrian ski areas will reduce substantially. The lack of higher altitudes in many of the Austrian mountain ranges makes it impossible to operate on high-elevation sites. The Swiss ski areas will be least affected in the Alps. For Germany, the low-lying ski areas of Bavaria will be highly affected. In France and Italy many ski areas operate at fairly high altitudes (5).

Changes in mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps have been assessed from an ensemble of regional climate model (RCM) experiments under the IPCC SRES A1B emission scenario (31). The assessment was carried out for the periods 2020–2049 and 2070–2099, compared with the control period 1971–2000. The strongest relative reduction in winter mean SWE was found below 1,500 m, amounting to 40–80 % by mid century relative to 1971–2000 and depending upon the model considered. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. Major impacts for winter tourism in the Alps are expected. Many ski-regions have mean elevations below 2,000 m and are therefore especially vulnerable to climate change (31).

Climate change versus demographic changes

From a comparison of the potential impacts of climate change and demographic changes on the ski tourism industry in Austria it was concluded that demographic changes will have a higher impact on skiing tourism than climate change in the first half of the twenty-first century, while climate change could be the more dominant driving force towards the end of the century. Demographic changes include population declines in source countries, and a trend to ageing populations (29).

Benefits - Austria

Climate change may have a net positive effect on the overall European potential for tourism: for the period 2071-2100 up to 59 million bed nights more or some 8% of the total of 777 million nights registered for 2005 in a study on 29 countries (27). Additional potential revenues could be in the order of 4-18 billion euros.

The changes are likely to be unequally spread across Europe, however. The year-round potential for tourism increases most in the northern parts of Europe, including the UK, Germany, the Netherlands and Scandinavia, and in Austria. In the southern countries, there is evidence for a net loss of potential, although improvements in the spring and autumn seasons are likely to offset a significant share of the deteriorations in summer. In particular Austria and the UK enjoy significant gains in relative terms, whereas Italy and Spain face the largest losses (27).

Adaptation strategies – In general

Climate change is slowly entering into decision-making of a range of tourism stakeholders (e.g., investors, insurance companies, tourism enterprises, governments, and tourists); studies that have examined the climate change risk appraisal of local tourism officials and operators have consistently found relatively low levels of concern and little evidence of long-term strategic planning in anticipation of future changes in climate (24).


There is also some evidence that local tourism operators may be overestimating their adaptive capacity (e.g., capacity to make snow under the warmest scenarios). The incorporation of adaptation to climate change into the collective minds of private and public sector tourism decision-makers (‘mainstreaming’) remains several steps away (24).

The capacity of the tourism sector to adapt to climate change is thought to be relatively high due to its dynamic nature and therefore there will be important opportunities for tourism to reduce the vulnerability of communities to climate change (24).

Adaptation strategies - Austria

While some regions may be able to maintain their winter tourism with suitable adaptation strategies, others would lose all winter tourism due to a diminishing snow pack. Despite global warming, it is impossible to exclude the possibility of winters with heavy snowfall in the future. Climate change must be viewed as a catalyst that is reinforcing and accelerating the pace of structural changes in tourism (1).


Climate change is already affecting the strategies and plans of the winter sport resorts today. Climate change and global warming, together with international competition, have been used as the key arguments for constructing artificial snow-making facilities, as well as for extending existing ski runs and opening new ones in high alpine regions (at above 3000 a.s.l.) (1).

The winter tourism industry has responded to the implications of observed changes, and a range of technological and behavioural adaptation measures have been put into practice. Artificial snow-making remains the dominant adaptation strategy. Other measures include grooming of ski slopes, moving ski areas to higher altitudes and glaciers, protecting against glacier melt with white plastic sheets, diversification of tourism revenues, and the use of insurance and weather derivatives (5). Also, withdrawal from ski tourism at lower elevations may be necessary. Swiss Banks, for example, now only provide very restricted loans to ski areas at altitudes below 1500 m (7).

Adaptation measures also have costs, as well as limits. Snow-making has proven cost-effective, but such estimates are based only on the direct financial costs to ski operations and do not include the potential externalities of such practices on water consumption, energy demand, landscape, or ecology. Furthermore, snow-making costs will increase non-linearly as temperatures increase – and if ambient temperatures increase beyond a certain threshold snow-making will simply not be viable (5). Ski season simulations show that snowmaking technology can maintain snow-reliable conditions in Austria until the 2040s to the 2050s, but by the end of the century the required production in snow volume is projected to increase by up to 330% (26).

Likewise, grooming of ski slopes can reduce the minimum snow-depth required for ski operations by 10 or 20 cm. However, no amount of grooming can overcome significant declines or the total absence of snow cover. Similarly, plastic sheets have been shown to be cost-effective in protecting glacier mass, but there are limits to the area that can be covered by such sheets and they cannot prevent the eventual disappearance of glaciers if warming trends continue (5).

Insurance, meanwhile, can reduce the financial losses from occasional instances of snow-deficient winters, but cannot protect against systemic long-term trends towards warmer winters (5).

Climate change will cause shifts in offer and demand as well as shifts in the regions of origin of guests. Some touristic destinations will lose in attractiveness, others will profit from new opportunities. By adjusting their offer, tourist destinations may develop new core competences, and new guest groups may be attracted (4).

Promising development models for the Swiss tourism industry are the concentration of winter sports in top destinations, the promotion of wellness-centres in the mountain region, and the diversification of attractions offered for summer recreation. These examples illustrate that adaptation takes place in a dynamic context, where minimising the cost of damage caused by climate change goes hand in hand with the search for innovative business opportunities (4).

Climate change versus demographic changes

It was shown that it is more likely that demand for skiing tourism may decline seriously in the upcoming decades than that current demand could be maintained or even increased. Thus, current trends on the supply side, e.g. further extensions of ski areas and increases in transport or accommodation capacity, might not be financially viable. If this scenario is maintained in the future, competition will continue to increase until non-profitable ski areas exit the market. A contraction of the ski market could seriously affect rural municipalities being highly dependent on (skiing) tourism. In order to maintain the current standard of living in these municipalities, the sustainable development of tourism is absolutely necessary. Thus, the tourism industry is required not only to diversify its product portfolio but it should foster snow-independent tourism activities that are attractive for older age groups (29).

Examples of shut down of ski resorts

An Example of successful withdrawal from ski tourism is Gschwender Horn in Immenstadt, Bavaria. At the beginning of the 1990s, after a series of snow-deficient winters, the municipality, together with the Allianz Umweltstiftung, decided to withdraw from the non-profitable ski operation. The facilities (two ski lifts and a transportable children’s lift) were dismantled, the ski runs (approximately 40 hectares) re-naturalised. Today, the area is used for summer and winter tourism, namely hiking, mountain biking, snowshoeing and ski touring (17).

The city council of Abondance in the French Alps - its name a cruel reminder of the generous snowfall it once enjoyed – has decided to shut down the ski station that has been its economic raison d'etre for more than 40 years. The reason: not enough snow. Abondance (at 930 meters) falls in the altitude range climate scientists say has seen the most dramatic drop in snowfall in recent generations (20). Whether this shut down is due to climate change or not is disputed (21,22). Other factors, such as incomplete investments (€ 5.3 million in a mixed chairlift/telecabine without snowmaking on the pistes below) may be far more important than global warming (21).

There are 20 other lowlying Haute Savoie resorts that some say are on the brink of closure. A report last winter by the Organisation for Economic Cooperation and Development suggests that the number of ski resorts in the department will fall from 37 to 18 if poor conditions continue (22).

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Austria.

  1. Elsasser and Bürki (2002)
  2. Bürki (2000), in: Elsasser and Bürki (2002)
  3. Meier (1998), in: Elsasser and Bürki (2002)
  4. Federal Office for the Environment FOEN of Switzerland (Ed.) (2009)
  5. Agrawala (2007)
  6. Föhn (1990); Haeberli and Beniston (1998), in: Agrawala (2007)
  7. Elsasser and Burki (2002), in: Agrawala (2007)
  8. Marty (2008)
  9. BMU (2004), in: European Environment Agency (EEA) (2005)
  10. Bätzing (2003) , in: European Environment Agency (EEA) (2005)
  11. Güthler (2003), in: Alcamo et al. (2007)
  12. Bätzing ( 2003); Kanatsching and Weber (1998), in: Alcamo et al. (2007)
  13. Bader and Kunz (1998), in: Alcamo et al. (2007)
  14. Hantel et al. (2000); Wielke et al. (2004); Martin and Etchevers (2005), all in: Alcamo et al. (2007)
  15. Hantel et al. (2000), in: Alcamo et al. (2007)
  16. Beniston et al. (2003), in: Alcamo et al. (2007)
  17. Föhn (1990), in: Elsasser and Bürki (2002)
  18. Allianz Umweltstiftung (2005),in: Agrawala (2007)
  19. Federal Ministry of Agriculture, Forestry, Environment and Water Management (2010)
  20. http://www.msnbc.msn.com
  21. http://pistehors.com
  22. http://www.timesonline.co.uk
  23. EEA, JRC and WHO (2008)
  24. UNWTO, UNEP and WHO (2008)
  25. Deutsche Bank Research (2008)
  26. Steiger (2010), in: IPCC (2012)
  27. Amelung and Moreno (2012)
  28. Laimer et al. (2009), in: Steiger (2012)
  29. Steiger (2012)
  30. Yeoman (2008), in: Steiger (2012)
  31. Steger et al. (2013)
x