Skip to content

Turkey

Fresh water resources

Present situation in Turkey

Turkey is one of the most water rich countries of the Mediterranean, but due to an enormous population increase from 28 million in the 1960’s to 68 million in 2000 the availability of water resources has already decreased from around 4000 m3 to 1500 m3 per capita/year today. Water demand in Turkey approximately has doubled in the second half of the last century. The overall water demand in Turkey continues to increase, even more in the light of the effects of drought (or climate change). Turkey will suffer from water scarcity in the next years (8). Water availability is expected to decline to 1000 m3 in 2050 as a result of population growth and impact of climate change (31).

About 74% of the total water supply of Turkey is used for agricultural irrigation, remaining 15% and 11% are used for drinking-domestic and industrial purposes, respectively (9,31).

Abstraction non-renewable groundwater reserves

‘‘Non-renewable groundwater’’ denotes groundwater gained by abstraction in excess of recharge. The amount of non-renewable groundwater abstraction that contributes to gross irrigation water demand has been calculated for a large number of countries, allowing for a global overview. The results of this study show that non-renewable groundwater abstraction globally contributes nearly 20%, or 234 km3 annually, to the gross irrigation water demand (for the reference year 2000) and has more than tripled in size since the year 1960. From 1960 to 2000 an increased dependency was shown of irrigation on non-sustainable groundwater with time. Thus, irrigation is more and more sustained by an unsustainable water source (12).

Country assessments reveal that non-renewable or non-sustainable groundwater supplies large shares of current irrigation water, particularly for semi-arid regions where surface freshwater and rainfall are very scarce: Pakistan, Iran, Saudi Arabia, Libya, UAE and Qatar. Much of current irrigation in these regions is sustained by non-sustainable groundwater (12).

For Europe, the contribution (%) of non-renewable groundwater abstraction to gross irrigation water demand was calculated for Italy (15%), Spain (7%), Turkey (7%) and Greece (2%) (12). Projected increases in irrigation demand in southern Europe will serve to stress limited groundwater resources further (21).

Vulnerabilities Turkey - Future projection

Studies indicate that Turkey has some of the highest levels of water security threat of the countries in Europe. It is densely populated and most areas of the country face high or very high levels of water stress. This problem is likely to increase with the rapidly rising population and the potential drying associated with rising temperatures (13,17). Estimates of changes in runoff of between -52% and -61% (14), and reductions of surface waters in the Turkish basins of 20%, 35% and 50% for 2030, 2050 and 2100 have been reported (15). By 2100 Turkey could experience an expansion of arid areas that could lead to increased water stress around the southern Mediterranean areas (16).

The likely effects of climate change on the water resources of the eastern Mediterranean and Middle East region have been investigated using a high-resolution regional climate model (PRECIS) by comparing precipitation simulations of 2040–2069 and 2070–2099 with 1961–1990 (18). The projected change in internal water resources is assumed to be the same as the projected change in precipitation. Turkey has a large rural population, with 43% of its economically active population, nearly 15 million people, working in agriculture. Its precipitation and water resources were projected to suffer a modest decline of 11% by midcentury and 12% by the end of the century. While water resources as a whole for the country remain relatively plentiful, Turkey is still facing having its per capita water resources decrease by nearly one third by midcentury. Turkey’s agricultural sector will therefore be forced to become more water efficient and will, despite this increased efficiency, probably still decline as a source of employment. In spite of this decline, Turkey is likely to remain a major net agricultural exporter as its large land area, large rural population, and relatively large water resources will allow it to export virtual water to its water-scarce regional environment.

Substantial reduc­tions in potential groundwater recharge are projected for the 21st century in southern Europe (Spain and northern Italy) whereas increases are consist­ently projected in northern Europe (Denmark, southern England, northern France) (19). Along the southern rim of the Mediterranean Sea decreases in potential groundwater recharge of more than 70% by the 2050s have been simulated using output from two climate models (ECHAM4, HadCM3) under two emissions scenarios (A2, B2) (20).

Headwaters of Euphrates and Tigris

The Euphrates–Tigris Basin hosts the two important snow-fed rivers of the Middle East, and its water resources are critical for the hydroelectric power generation, irrigation and domestic use in the basin countries, namely Turkey, Syria, Iraq and Iran (27). Approximately 90% of the Euphrates flow and 46% of the Tigris flow originate in Turkey (28). Based on different model and scenario simulations, projections were made of future changes in temperature, precipitation, snow cover and river discharge in the Euphrates–Tigris basin countries. From these projections the following was concluded (27):

  • Temperature: All scenario simulations indicate surface temperature increases across the entire Euphrates–Tigris basin. The increase is comparatively greater in the highlands in winter. Increase in annual surface temperature in the highlands ranges between 2.1°C (lower emissions scenario, B1) and 4.1°C (higher emissions scenario, A1FI) for 2041–2070, whereas it ranges between 2.6°C and 6.1°C for 2071–2099. Cold season temperature increase has the potential to greatly impact the regional hydrological cycle by reducing the snow cover and changing the seasonality of surface runoff.
  • Precipitation: Precipitation is projected to decrease in the highlands and northern parts of the basin and increase in the southern parts, as was shown before (e.g., Evans, 2008; Onol and Semazzi, 2009; Chenoweth et al., 2011). The changes in precipitation are statistically significant in the large areas of the basin in most of the simulations. Projected precipitation decrease in the highlands by the end of the present century is 33% under the higher emissions scenario (A1FI) and 6 - 24% under the A2 scenario. Snow water equivalent precipitation in the highlands is projected to decrease by 55% for B1 scenario, 77–85% for A2 scenario and 87% for A1FI scenario.
  • River discharge: The territory of Turkey will likely experience more adverse direct effects of the climate change compared to the territories of the other countries in the basin. The annual surface runoff is projected to decrease by 26 - 57% in the territory of Turkey by the end of the present century. Because much of the headwaters are located in this territory, all other countries in the basin are expected to feel the stress for the diminishing waters during the twenty first century.

These results are substantiated by other model studies that show a 12% decrease of the average annual Euphrates–Tigris river discharge in Turkey by 2040–2069 (IPCC A1B scenario (29)), and a 29–73% decrease of the Euphrates River discharge by the end of the present century (a number of models and emissions scenarios (30)).

Regional climate model results for the period of 2071–2100 under SRES A2 emission scenario, compared with 1961–1990, indicate that a significant increase (48 %) in the autumn season precipitation is simulated over south-eastern Turkey, which may help to offset the winter deficit and therefore reduce the net change during the annual cycle (25). However, in this area societal risks are high and adaptive capacity is low, which enhances potential conflicts and stress on water resources (25,26).

Europe: five lake categories

There are almost one and a half million lakes in Europe, if small water bodies with an area down to 0.001 km2 are included. The total area of lakes is over 200,000 km2; in addition the manmade reservoirs cover almost 100,000 km2. The response of European lakes to climate change can be discussed by dividing the lakes into five categories (10):


Read more

South-eastern Europe: four types of lakes

In order to discuss the effect of climate change to lakes in south-eastern Europe, the region is divided into three climatic sub regions. The main characteristic in this subdivision is the mean temperature in January, because the severity of winter has an essential influence to the lakes. The sub regions and the anticipated influences of climate change, around the year 2050, are as follows (10):


Read more

Present situation in Europe

Water demand

In the EU as a whole, energy production accounts for 44% of total water abstraction, primarily serving as cooling water. 24% of abstracted water is used in agriculture, 21% for public water supply and 11% for industrial purposes (3).

These EU-wide figures for sectoral water use mask strong regional differences, however. In southern Europe, for example, agriculture accounts for more than half of total national abstraction, rising to more than 80 % in some regions, while in western Europe more than half of water abstracted goes to energy production as cooling water. In northern EU Member States, agriculture's contribution to total water use varies from almost zero in a few countries, to over 30% in others (7). Almost 100% of cooling water used in energy production is restored to a water body. In contrast, the consumption of water through crop growth and evaporation typically means that only about 30% of water abstracted for agriculture is returned (3).


Read more

Projected future situation in Europe

Water demand

Appliance ownership data is not currently readily available for the new Member States but it is believed that rates are currently relatively low and likely to rise in the future. Higher income can also result in increased use and possession of luxury household water appliances such as power showers, jacuzzis and swimming pools. Changes in lifestyle, such as longer and more frequent baths and showers, more frequent use of washing machines and the desire for a green lawn during summer, can have a marked effect on household water use. The growth in supply within southern Europe has been driven, in part, by increasing demand from tourism. In Turkey, abstraction for public water supply has increased rapidly since the early 1990s, reflecting population growth and a rise in tourism (3).


Read more

Adaptation strategies

EU policy orientations for future action

According to the EU, policy orientations for the way forward are (11):

  • Putting the right price tag on water;
  • Allocating water and water-related funding more efficiently: Improving land-use planning, and Financing water efficiency;
  • Improving drought risk management: Developing drought risk management plans, Developing an observatory and an early warning system on droughts, and Further optimising the use of the EU Solidarity Fund and European Mechanism for Civil Protection;
  • Considering additional water supply infrastructures;
  • Fostering water efficient technologies and practices;
  • Fostering the emergence of a water-saving culture in Europe;
  • Improve knowledge and data collection: A water scarcity and drought information system throughout Europe, and Research and technological development opportunities.

Managed aquifer recharge

Comprehensive management approaches to water resources that integrate ground water and surface water may greatly reduce human vulnerability to climate extremes and change, and promote global water and food security. Conjunctive uses of ground water and surface water that use surface water for irrigation and water supply during wet periods, and ground water during drought (22), are likely to prove essential. Managed aquifer recharge wherein excess surface water, desalinated water and treated waste water are stored in depleted aquifers could also sup­plement groundwater storage for use during droughts (23,24). Indeed, the use of aquifers as natural storage reservoirs avoids many of the problems of evaporative losses and ecosystem impacts asso­ciated with large, constructed surface-water reservoirs.

Measures

A number of measures exist that may potentially reduce the use of publicly supplied water. These can be broadly grouped into the categories of water saving devices; greywater re-use; rainwater harvesting and the efficient use of water in gardens and parks; leakage reduction; behavioural change through raising awareness; water pricing; and metering. Since treating, pumping and heating water consumes significant amounts of energy, using less publicly supplied water also reduces energy consumption (3).


Read more

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Turkey.

  1. Alcamo et al. (2007)
  2. Eisenreich (2005)
  3. EEA (2009)
  4. EEA, JRC and WHO (2008)
  5. Environment Agency (2008a), in: EEA (2009)
  6. EEA (2007), in: EEA (2009)
  7. IEEP (2000), in: EEA (2009)
  8. Dogdu and Sagnak (2008)
  9. DSI (2005); MGR (2007); Margat (2004), all in: Dogdu and Sagnak (2008)
  10. Kuusisto (2004)
  11. Commission of the European Communities (2007)
  12. Wada et al. (2012)
  13. Vörösmarty et al. (2010), in: MET Office (2011)
  14. Fujihara et al. (2008b), in: MET Office (2011)
  15. Ozkul (2009), in: MET Office (2011)
  16. Gao and Giorgi (2008), in: MET Office (2011)
  17. MET Office (2011)
  18. Chenoweth et al. (2011)
  19. Hiscock et al. (2011), in: Taylor et al. (2012)
  20. Döll (2009), in: Taylor et al. (2012)
  21. Falloon and Betts (2010), in: Taylor et al. (2012)
  22. Faunt (2009), in: Taylor et al. (2012)
  23. Scanlon et al. (2012), in: Taylor et al. (2012)
  24. Sukhija (2008), in: Taylor et al. (2012)
  25. Önol and Unal (2012)
  26. Scheffran and Battaglini (2011), in: Önol and Unal (2012)
  27. Bozkurt and Sen (2012)
  28. FAO (2009), in: Bozkurt and Sen (2012)
  29. Chenoweth et al. (2011), in: Bozkurt and Sen (2012)
  30. Kitoh et al. (2008); Nohara et al. (2006), both in: Bozkurt and Sen (2012)
  31. Aktaş (2014)

Share this article: