Poland Poland Poland Poland

Health Poland


Mosquito-borne diseases

There is agreement that the risk of a potential spread of malaria in Europe is very low under current socio-economic conditions, but some Eastern European countries might be at risk. In Eastern European countries, where per-capita health expenditure is relatively low, health services are less efficient in detecting and treating malaria cases, and the environmental measures to control mosquito distribution are poorly implemented. This could eventually contribute to the uncontrolled spread of the disease in these countries (1).

Tick-borne diseases

Climate change to date is not necessarily the cause of the marked increased incidence of a variety of tick-borne diseases in many parts of Europe over the past two decades, however. This increase may also be due to the impact of biotic factors, such as increases in deer abundance and changing habitat structure, and of socio-political changes following the end of communist rule (2).

Sand-fly-borne diseases

Leishmaniasis is a protozoan parasitic infection caused by Leishmania infantum that is transmitted to human beings through the bite of an infected female sandfly. Sandfly distribution in Europe is south of latitude 45⁰N and less than 800 m above sea level, although it has recently expanded as high as 49⁰N. Currently, sandfly vectors have a substantially wider range than that of L infantum, and imported cases of infected dogs are common in central and northern Europe. Once conditions make transmission suitable in northern latitudes, these imported cases could act as plentiful source of infections, permitting the development of new endemic foci. Conversely, if climatic conditions become too hot and dry for vector survival, the disease may disappear in southern latitudes. Thus, complex climatic and environmental changes (such as land use) will continue to shift the dispersal of leishmaniasis in Europe (3).

Air quality

Anticipated climate impacts on air quality were assessed for the Czech Republic, Poland, Hungary and Bulgaria by simulating air quality for 3 decades: 1991−2000, 2041−2050, and 2091−2100 under the IPCC A1B scenario (16). In order to exclusively study climate impacts on air quality, the anthropogenic emissions were kept constant in all simulations at the values of the year 2000 for all considered time slices. The impacts of the simulated climate change on the air quality are rather weak for the mid-century (2041−2050). For the end-century (2091−2100), an increase in summer mean ozone was shown and a decrease in annual mean particulate matter with a diameter < 10 μm for all four countries. The main climate factors responsible for the projected changes were an increase in summer temperature and a decrease in summer precipitation for ozone, and an increase in winter precipitation for fine particulate matter (16).

Climate change may reduce the levels of exposure to anthropogenic particulate air pollution in future decades and this reduction will reduce adverse health effects caused by the air pollution (17).


Floods are the most common natural disaster in Europe. The adverse human health consequences of flooding are complex and far-reaching: these include drowning, injuries, and an increased incidence of common mental disorders. Anxiety and depression may last for months and possibly even years after the flood event and so the true health burden is rarely appreciated (4).

Effects of floods on communicable diseases appear relatively infrequent in Europe. The vulnerability of a person or group is defined in terms of their capacity to anticipate, cope with, resist and recover from the impact of a natural hazard. Determining vulnerability is a major challenge. Vulnerable groups within communities to the health impacts of flooding are the elderly, disabled, children, women, ethnic minorities, and those on low incomes (4).

Heat-related mortality

The heat waves of 2003 and 2010 hit large parts of Europe and caused tens of thousands of fatalities across the continent. Mortality increases during smaller scale heat waves as well. This was concluded from a study on additional mortality during heat waves in the 10 most populous cities in Poland (20). Four heat waves were studied: the hot summers of 1992, 1994, 2006, and 2010. The study shows that the number of fatalities in some Polish cities was more than three times higher during the hottest days than the mean mortality at the same date in years without a heat wave. The number of additional deaths in the largest cities increased noticeably when daily maximum air temperature exceeded 26-28 °C. The number of heat-related fatalities was highest in the summer of 1994: in the 10 largest cities of Poland, additional mortality was almost 1100 people (20). Heat waves in June 2019 caused a 10% increase in total mortality compared with the same month in the preceding 10 years (21).

Previous studies on intense and long-lasting heat waves have shown that a large part of the heat-related fatalities are vulnerable, often elderly people. Without the heat wave, these people would have died in the next weeks, and the additional heat-wave-related mortality is a temporal shift: in the weeks after the heat wave, mortality is relatively low. The polish results show a different picture: additional heat-wave-related mortality is compensated only slightly (up to 25%), or even not at all, by a decrease of the number of fatalities in the 30 days after the heat wave. The Polish results agree with other studies in the sense that the increase of mortality risk during heat waves in Poland is particularly high for people older than 65 years and suffering from cardiovascular diseases (20). The excess mortality was highest during heat waves that were both intense and long lasting, i.e., with maximum air temperature exceeding 35 °C and heat wave duration longer than 4 weeks. For long-lasting heat waves in urban conditions in Poland, their intensity seems to be of higher importance than their duration (20).

The increase of annual heat-related mortality at the end of twenty-first century compared with present-day conditions has been assessed for Polish cities with a population above 200,000. This mortality was found to increase by 40% to 165% for a low- and high-end scenario of climate change, respectively. For a moderate scenario the projected increase is about 120% (19). 

Heat stress - Urban Heat Island

Currently, the urban heat island effect (the effect that the city is warmer than its surrounding rural areas) in the city of Poznań can be up to 6°C when there is anticyclonic circulation (high-pressure system). This effect is generally highest during nighttime. Most of the year, however, the urban heat island effect is 0.8 - 1.2°C (18). 

Adaptation strategies - Poland

The following adaptation measures to combat climate change-related diseases and incidents have been advised for Poland (19):


  • the fitting out of hospitals, outpatient surgeries and other facilities with air conditioning and refrigeration units 
  • better preparation of medical staff for urgent weather-related incidents, including heat stress 
  • storage of seasonal supplies in sufficient quantity
  • adequate protection of workplaces exposed to climate factors (including heat waves), to ensure minimization of the negative effects

Long term

  • a watch warning system informing society and the healthcare authorities of extreme weather events capable of resulting in accidents and other health problems
  • periodic courses to upskill medical personnel as regards the diagnosis and treatment of heat-related health disorders 
  • implementation of educational programmes dealing with the complex influences of changing climate on human health
  • modernisation of laboratories for the early diagnosis of cardiovascular disorders
  • improvement of the infrastructure at hospitals, outpatient surgeries, health resorts and other facilities within the healthcare system
  • an interactive system to monitor and register climate-related diseases
  • funding for research on epidemiology, toxicology and climate physiology, with a view to improve knowledge of mechanisms of heat-related health disorders
  • an information system for health prophylaxis, including periodical examinations, promotion of healthy nutrition and lifestyle, pre-medical aid and appropriate reactions to extreme weather events 

Adaptation strategies - General - Heatwaves

The outcomes from the two European heat waves of 2003 and 2006 have been summarized by the IPCC (6) and are summarized below. They include public health approaches to reducing exposure, assessing heat mortality, communication and education, and adapting the urban infrastructure.

1. Public health approaches to reducing exposure

A common public health approach to reducing exposure is the Heat Warning System (HWS) or Heat Action Response System. The four components of the latter include an alert protocol, community response plan, communication plan, and evaluation plan (7). The HWS is represented by the multiple dimensions of the EuroHeat plan, such as a lead agency to coordinate the alert, an alert system, an information outreach plan, long-term infrastructural planning, and preparedness actions for the health care system (8).

The European Network of Meteorological Services has created Meteoalarm as a way to coordinate warnings and to differentiate them across regions (9). There are a range of approaches used to trigger alerts and a range of response measures implemented once an alert has been triggered. In some cases, departments of emergency management lead the endeavor, while in others public health-related agencies are most responsible (10).

2. Assessing heat mortality

Assessing excess mortality is the most widely used means of assessing the health impact of heat-related extreme events.

3. Communication and education

One particularly difficult aspect of heat preparedness is communicating risk. In many locations populations are unaware of their risk and heat wave warning systems go largely unheeded (11). Some evidence has even shown that top-down educational messages do not result in appropriate resultant actions (12).

More generally, research shows that communication about heat preparedness centered on engaging with communities results in increased awareness compared with top-down messages (13).

4. Adapting the urban infrastructure

Several types of infrastructural measures can be taken to prevent negative outcomes of heat-related extreme events. Models suggest that significant reductions in heat-related illness would result from land use modifications that increase albedo, proportion of vegetative cover, thermal conductivity, and emissivity in urban areas (14). Reducing energy consumption in buildings can improve resilience, since localized systems are less dependent on vulnerable energy infrastructure. In addition, by better insulating residential dwellings, people would suffer less effect from heat hazards. Financial incentives have been tested in some countries as a means to increase energy efficiency by supporting those who are insulating their homes. Urban greening can also reduce temperatures, protecting local populations and reducing energy demands (15).


The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Poland.

  1. WHO (2005), in: Behrens et al. (2010)
  2. Randalph (2004)
  3. Semenza and Menne (2009)
  4. Hajat et al. (2003)
  5. Szwed (2010)
  6. IPCC (2012)
  7. Health Canada (2010), in: IPCC (2012)
  8. WHO (2007), in: IPCC (2012)
  9. Bartzokas et al. (2010), in: IPCC (2012)
  10. McCormick (2010b), in: IPCC (2012)
  11. Luber and McGeehin (2008), in: IPCC (2012)
  12. Semenza et al. (2008)), in: IPCC (2012)
  13. Smoyer-Tomic and Rainham (2001), in: IPCC (2012)
  14. Yip et al. (2008); Silva et al. (2010), both in: IPCC (2012)
  15. Akbari et al. (2001), in: IPCC (2012)
  16. Juda-Rezler (2012)
  17. Tainio et al. (2013)
  18. Półrolniczak et al. (2017)
  19. Błażejczyk et al. (2018)
  20. Graczyk et al. (2019)
  21. Błażejczyk et al. (2022)