Europe Europe Europe Europe

Flash floods and urban flooding: European scale

Vulnerabilities - flash floods due daily rainfall extremes

Flash floods caused on average 50 casualties per year in Europe, 70% of the total number of deaths due to floods (8). The fatalities mainly occur in countries surrounding the Mediterranean Sea, where large population density exists at the coastal areas due to the important urbanization processes in this area during the last decades (9). Particularly in Spain, almost 90% of the victims due to floods are caused by flash floods (10). 


Changes in river flow extremes at a +2°C global warming are currently of central interest as this is the global target defined by policymakers to lower international greenhouse gases emissions. The impacts of a +2°C global warming on extreme floods (due to daily rainfall extremes) have been assessed for Europe for 1 in 10 and 1 in 100 year events. This was done for a combination of different models (global and regional climate models, hydrological models); the changes in floods were compared with the reference period 1971 - 2000 (2).

For floods (due to daily rainfall extremes) the results indicate a clear North to South gradient in future changes in flood magnitude:

  • South the 60°N line: a strong increase in flood magnitudes, due to changes in extreme rainfall, except for some regions in Bulgaria, Czech Republic, Poland, the western Balkans, the Baltic countries, and southern Spain where no significant changes can be detected. Floods are even increasing in areas such as southern Mediterranean where the average discharge is projected to decrease (3).
  • Above the 60°N line: a relatively strong decrease in flood magnitude in parts of Finland, NW Russia and North of Sweden with the exception of southern Sweden and some coastal areas in Norway where increases in floods are projected. Projections of decreasing flood magnitudes are mainly due to the decreases in snowpack in areas where most of the floods are caused by spring snowmelt in combination with rainfall. Increases in flood magnitude in Scandinavia are mainly seen in coastal areas where the rain-fed floods will increase (2). 

Vulnerabilities - Urban drainage

An urban drainage system may damp or amplify changes in precipitation, depending on the system characteristics. The combined impact of climate change and increased urbanisation in some parts of the North Sea region could result in as much as a four-fold increase in sewer overflow volumes (6). For Roskilde (Denmark), for instance, a 40% increase in design rainfall intensities was found to increase the current level of damage costs related to sewer flooding by a factor of 10 (4). The actual change in cost will depend on catchment and sewer system characteristics. The impacts of climate change on sewer flood and overflow frequencies and volumes show wide variation. Studies indicate a range from a four-fold increase to as low as a 5 % increase, depending on the system characteristics (5).


Floods and overflows occur when runoff or sewer flow thresholds are exceeded. Given that the response of the sewer system to rainfall may be highly non-linear, the changes in the sewer response may be much stronger than the changes in rainfall. And the impact ranges can even by wider when studying the impacts of sewer overflows on receiving rivers. Sewer overflow mainly occurs in summer and as models project the likelihood of lower river flow in summer in northwestern Europe, dilution effects in the receiving water might be less, thus increasing impacts on river water quality and aquatic life (6). Changes other than those related to climate may also occur in urban areas, such as increased urbanization and more pavement surfaces, and affect or strengthen urban drainage impacts (7).

Adaptation strategies

At many places climate change both increases droughts and heavy rainfall. Too little and too much water are part of the same problem. They may be part of the same solution too: by redesigning the storm water infrastructure of cities.  

When it rains hard, the sudden volume of water can overwhelm urban drainage systems and lead to flash flooding. Slowing down this discharge and collecting part of it in reservoirs can overcome this. In fact, by storing it we can safe the water for the future, and we can turn troublesome storm water into a resource. Vegetation planted in and around the reservoir purifies the water because the pollutants become trapped in the soil or the roots, and contaminants are taken up by tissues or even broken down into less harmful substances. The cleaner water can then be further purified and allowed to percolate into underground aquifers beneath the city, where it can serve as a drinking-water source during droughts (1).


The necessary adjustments can be fit in the city’s infrastructure quite easily. By digging a trench, for instance, alongside the pavement filled with gravel and soil, and planted with trees. The trench acts as an intermediary step between the storm drain and the sewer, a sponge, and slows and purifies the runoff to protect the city. There’s an extra advantage to more trees in the cities: their shade relieves the heat during summers (1).

In addition to these adjustments of the urban drainage system, several other measures can be taken that strengthen these positive effects of reducing urban flooding and increasing water storage in aquifers: pervious paving increase infiltration, and green roofs capture storm water, allowing much of it to evaporate before directing the filtered excess into the city’s drainage system (1).

Green versus engineering: tailor-made solutions

Urban green infrastructure may be effective as an integral component of storm water adaptation measures to mitigate climate change-induced flooding (12). The relative efficacy and costs of green infrastructure and conventional engineering adaptation approaches has been quantified for two communities in the Midwest USA (11). Grey infrastructure approaches include upsizing existing storm water pipes and containing excess flood volume in underground storage chambers. Local-scale green infrastructure practices focus on increasing the proportion of watershed runoff draining to bioinfiltration areas. Utilizing over-curb surface storage in areas where structures would not be impacted was also considered as a non-structural adaptation strategy (11).

Model results show that adaptation strategies incorporating storm water (bio)infiltration may reduce overall adaptation costs while providing a more comprehensive suite of benefits than grey infrastructure alone. For a 10-year design storm, substantial reductions in flood volume were predicted by applying bioinfiltration areas to only 10% of a ‘traditional, built-out urban area’. The flood storage volume of existing green infrastructure was much larger, however, than the flood volume that could be handled by introducing bioinfiltration. This led to the conclusion that for the study site preserving the hydrologic connectivity of green infrastructure was a more robust adaptation approach than engineered infiltration approaches (11).

Vulnerability of urban areas to storm water flooding varies according to regional climate patterns and site-specific factors such as topography, drainage system configuration and the capacity of soils and other natural or engineered storage elements to store excess runoff (13). Therefore, the efficacy of green infrastructure versus conventional engineering adaptation approaches will also vary from one urban area to another. Climate-proofing urban storm water networks calls for tailor-made solutions that fit the specific context of a certain urban area. 

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Europe.

  1. Gaines (2016)
  2. Roudier et al. (2016)
  3. Greuell et al. (2015), in: Roudier et al. (2016)
  4. Arnbjerg-Nielsen and Fleischer (2009), in: Willems and Lloyd-Hughes (2016)
  5. Willems et al. (2012a, b), in: Willems and Lloyd-Hughes (2016)
  6. Willems and Lloyd-Hughes (2016)
  7. Olsson et al. (2010), in: Willems and Lloyd-Hughes (2016)
  8. Barredo (2007), in: Pino et al. (2016) 
  9. Llasat et al. (2010), in: Pino et al. (2016)
  10. Olcina and Ayala-Carcedo (2002), in: Pino et al. (2016)
  11. Moore et al. (2016)
  12. Gaffin et al. (2012), in: Moore et al. (2016)
  13. Heidrich et al. (2013), in: Moore et al. (2016)
x