Skip to content

Sweden

River floods

Sweden: Vulnerabilities – Floods in the past

In the 1990s, floods have occurred almost regularly: in 1993, 1995, 1998 and 2000, to mention the most notable ones. With the exception of the 1995 flood, most recent floods have been induced by rainfall in summer or autumn, whereas the snowmelt-induced spring flood has traditionally been the largest flood of the year. The year 2000 was quite extraordinary, and contained two distinct floods. Not surprisingly, 2000 emerged as the year with the highest average precipitation over all of Sweden, since measurements began in 1860 (21).


Read more

Sweden: Vulnerabilities – No impact climate change observed

Changes in river flow may appear from shifts in land cover, constructions in the river channel and climatic change, but currently there is a lack of understanding of the relative importance of these drivers. One might expect changes in land cover to affect transpiration by trees and the retention of water in the soil, and thus the volumes of (ground)water flowing into the rivers and streams. Constructions directly change river flow, and climate change does so indirectly through changes in temperature, humidity and precipitation.


Read more

Sweden: Vulnerabilities – Future flood probability

Changes in dry and wet spell characteristics in Europe have been projected for 2021–2050 compared with 1961–1990, based on Regional Climate Model simulations under the A1B emission scenario. From the results it can be concluded that significant changes in dry and wet event characteristics are expected with high confidence in the southernmost (mainly France, Italy, and Spain) and northernmost (mainly Iceland and Scandinavia) regions of Europe, respectively. Southern Europe is most probably facing an increased risk of longer, more frequent, severe, and widespread droughts, while northern Europe is facing increased risk of intensified wet events. For precipitation, the most pronounced changes are found for the Iberian Peninsula in summer (−17.2%) and for Scandinavia in winter (+14.6%) (34).

According to the various climate scenarios the local runoff in Sweden will change in 2071-2100 relative to 1961−1990. In a normal year a 10%  to over 40% runoff increase in the northern 2/3 of Sweden is projected. For the southern 1/3 of Sweden the projection varies between a 25% decrease or a 25% increase (26).


Read more

Sweden: Vulnerabilities – Flood damage

Several major floods have affected Sweden in recent years. The floods around Lake Vänern in 2000/2001 and Arvika in 2000 are two examples.

The cost up until 2100 for the flooding of buildings around the major lakes – Vänern, Mälaren and Halmaren – was estimated at a total of SEK 7.9 billion at today’s hundred-year flood (28). Damage costs for shipping, roads, railways, agriculture, forestry, water treatment works, sewage system, power station and industries totaled an additional SEK 3.2 billion.

Today’s hundred-year flood, as well as smaller floods with shorter return frequencies, will have a reduced return frequency in some parts of the country. In the area around Lake Vänern, for example, it is estimated that the hundred-year floods will have a return frequency of 20 years. The hundred-year floods in a changed climate will therefore be higher than at present in these areas, which means that larger areas will be flooded. The return frequency will be longer in other parts of the country.

Europe: casualties in the past

The annual number of reported flood disasters in Europe increased considerably in 1973-2002 (1). A disaster was defined here as causing the death of at least ten people, or affecting seriously at least 100 people, or requiring immediate emergency assistance. The total number of reported victims was 2626 during the whole period, the most deadly floods occurred in Spain in 1973 (272 victims), in Italy in 1998 (147 victims) and in Russia in 1993 (125 victims) (2).


Read more

Europe: flood losses in the past

The reported damages also increased. Three countries had damages in excess of €10 billion (Italy, Spain, Germany), three in excess of 5 billion (United Kingdom, Poland, France) (2).


Read more

Europe: flood frequency trends in the past

In 2012 the IPCC concluded that there is limited to medium evidence available to assess climate-driven observed changes in the magnitude and frequency of floods at a regional scale because the available instrumental records of floods at gauge stations are limited in space and time, and because of confounding effects of changes in land use and engineering. Furthermore, there is low agreement in this evidence, and thus overall low confidence at the global scale regarding even the sign of these changes. There is low confidence (due to limited evidence) that anthropogenic climate change has affected the magnitude or frequency of floods, though it has detectably influenced several components of the hydrological cycle such as precipitation and snowmelt (medium confidence to high confidence), which may impact flood trends (32).

Despite the considerable rise in the number of reported major flood events and economic losses caused by floods in Europe over recent decades, no significant general climate‑related trend in extreme high river flows that induce floods has yet been detected (7).


Read more

Europe: projections for the future

IPCC conclusions

In 2012 the IPCC concluded that considerable uncertainty remains in the projections of flood changes, especially regarding their magnitude and frequency. They concluded, therefore, that there is low confidence (due to limited evidence) in future changes in flood magnitude and frequency derived from river discharge simulations. Projected precipitation and temperature changes imply possible changes in floods, although overall there is low confidence in projections of changes in fluvial floods. Confidence is low due to limited evidence and because the causes of regional changes are complex, although there are exceptions to this statement. There is medium confidence (based on physical reasoning) that projected increases in heavy rainfall would contribute to increases in rain-generated local flooding, in some catchments or regions. Earlier spring peak flows in snowmelt- and glacier-fed rivers are very likely, but there is low confidence in their projected magnitude (32).

More frequent flash floods

Although there is as yet no proof that the extreme flood events of recent years are a direct consequence of climate change, they may give an indication of what can be expected: the frequency and intensity of floods in large parts of Europe is projected to increase (14). In particular, flash and urban floods, triggered by local intense precipitation events, are likely to be more frequent throughout Europe (15).


Read more

Adaptation strategies - General

Non-structural measures are in better agreement with the spirit of sustainable development than structural measures, being more reversible, commonly acceptable, and environment-friendly. Among such measures are source control (watershed/landscape structure management), laws and regulations (including zoning), economic instruments, an efficient flood forecast-warning system, a system of flood risk assessment, awareness raising, flood-related data bases, etc. As flood safety cannot be reached in most vulnerable areas with the help of structural means only, further flood risk reduction via non-structural measures is usually indispensable, and a site-specific mix of structural and non-structural measures seems to be a proper solution. As uncertainty in the assessment of climate change impacts is high, flexibility of adaptation strategies is particularly advantageous (31).

EU Directive on flood risk management

The new EU Directive on flood risk management, which entered into force in November 2006, introduces new instruments to manage risks from flooding, and is thus highly relevant in the context of adaptation to climate change impacts. The Directive introduces a three-step approach (2):

  • Member States have to undertake a preliminary assessment of flood risk in river basins and coastal zones.
  • Where significant risk is identified, flood hazard maps and flood risk maps have to be developed.
  • Flood risk management plans must be developed for these zones. These plans have to include measures that will reduce the potential adverse consequences of flooding for human health, the environment cultural heritage and economic activity, and they should focus on prevention, protection and preparedness.

Adaptation strategies - Sweden

In the event of flooding of Lake Vänern and Lake Mälaren, the most cost-effective measure is judged to be increasing the drainage potential. The cost of this amounts to approximately SEK 650 million for Lake Mälaren. For Lake Vänern, the cost has been specified as being in the range SEK 1−6 billion. A more accurate cost estimate for Lake Vänern requires landslide mapping for the Göta Älv river valley (26).

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Sweden.

  1. Hoyois and Guha-Sapir (2003), In: Anderson (ed.) (2007)
  2. Anderson (ed.) (2007)
  3. Mitchell (2003)
  4. Barredo (2009)
  5. Höppe and Pielke Jr. (2006); Schiermeier (2006), both in: Barredo (2009)
  6. Höppe and Pielke Jr. (2006), in: Barredo (2009)
  7. Becker and Grunewald (2003); Glaser and Stangl (2003); Mudelsee et al.(2003); Kundzewicz et al.(2005); Pinter et al.(2006); Hisdal et al.(2007); Macklin and Rumsby (2007), all in: EEA, JRC and WHO (2008)
  8. EEA, JRC and WHO (2008)
  9. Wang et al.(2005), in: EEA, JRC and WHO (2008)
  10. Milly et al. (2005), in: EEA, JRC and WHO (2008)
  11. Hisdal et al. (2007), in: EEA, JRC and WHO (2008)
  12. Ramos and Reis (2002), in: EEA, JRC and WHO (2008)
  13. Barnolas and Llasat (2007), in: EEA, JRC and WHO (2008)
  14. Lehner et al.(2006); Dankers and Feyen (2008b), both in: EEA, JRC and WHO (2008)
  15. Christensen and Christensen (2003); Kundzewicz et al.(2006), both in: EEA, JRC and WHO (2008)
  16. Palmer and Räisänen (2002), in: EEA, JRC and WHO (2008)
  17. Kay et al. (2006); Dankers and Feyen (2008), in: EEA, JRC and WHO (2008)
  18. Andréasson, et al. (2004); Jasper et al.(2004); Barnett et al.(2005), all in: EEA (2009)
  19. Arnell (2004); Milly et al. (2005); Alcamo et al. (2007); Environment Agency (2008a), all in: EEA (2009)
  20. Dankers and Feyen (2008), in: EEA (2009)
  21. Alexandersson (2002), in: Lindström and Bergström (2004)
  22. Lindström (1993, 1999), in: Hyvärinen (2003)
  23. Førland et al. (2000); Bering Ovesen et al. (2000); Klavins et al. (2002); Hyvärinen (2003), all in: Lindström and Bergström (2004)
  24. Lindström and Bergström (2004)
  25. Hisdal et al. (1995), in: Hyvärinen (2003)
  26. Swedish Commission on Climate and Vulnerability (2007)
  27. Kundzewicz (2009)
  28. SOU (2006), in: Swedish Commission on Climate and Vulnerability (2007)
  29. Ciscar et al. (2009), in: Behrens et al. (2010)
  30. Kundzewicz (2006)
  31. Kundzewicz (2002)
  32. IPCC (2012)
  33. Feyen et al. (2012)
  34. Heinrich and Gobiet (2012)
  35. Wilson et al. (2010), in: Mediero et al. (2014)
  36. Bering Ovesen et al. (2000); Forland et al. (2000); Hyvarinen (2003); Lindström and Bergström (2004); Thodsen (2007), all in: Kwadijk et al. (2016)
  37. Arheimer and Lindström (2019)
  38. Kuentz et al., (2017), in: Arheimer and Lindström (2019)
  39. Arheimer et al. (2017), in: Arheimer and Lindström (2019)

Share this article: