Skip to content

Poland

Coastal erosion

Vulnerabilities

The Polish coastline is 1032 km long, but about 500 km excluding the coastline of the Szczecin and Vistula Lagoons. Of this 500 km, some 420 km is fringed with wide sandy beaches backed by dunes, about 80 km are cliff shores (1). The strengthened section of the coast, including cliffs and dunes, is some 137 km (2). The number of erosion-prone areas is higher than that of accumulation areas; most of the coastline is classified as stable, however, with only minor changes (+/- 50 m per 100 years) (1).

The Baltic Sea is practically non-tidal; tidal range is 6 cm for the Polish coast. … Two basic shore types exist: dunes and barrier beaches, and cliffs. Cliffs comprise about 100 km of the coastline and are cut into Pleistocene sediments (3).


Read more

Adaptation strategies

Protective systems have already been developed for about 26% of the Polish coastline. About 98 km of the coast are fronted by groynes, while 41 km are protected by light and heavy revetments. The highest level of coastal protection exists along the 126 km long Jaroslawiec–Swinoujscie part of the Polish open coastline, where coastal defence structures extend over 71 km. The Hel Peninsula, Gulf of Gdansk, is protected along 34% of its length (3).

Between the 1900s and 1940s, groynes were the main type of protection used along with some light and heavy revetments. … At the end of the 1970s artificial nourishment was introduced, and this is now the established methodology used to protect 56 km of shoreline (3).

Coastal flood protection in Poland is designed for a 100 year return period of storm flood levels (4).

Area I

Full protection of the Odra estuary requires preservation of the polders on the periphery of the estuary. … All existing polder dykes must be adapted to the projected situation, and many new dykes must be constructed. … Wharves in ports and urban areas must also be raised (3).

Depending on the sea level rise scenario, in total 107 - 280 km of new dykes must be constructed in Area I. The lengths of upgraded dykes are 243-324 km. The cost of full protection in Area I is estimated between US$0.5 billion and US$2 billion, i.e., generally less than 10% of the value of the lost property and land (3).

Area II

To protect the most important places in Area II, new polders are required together with new facilities such as pumping stations, drainage, and other infrastructure, while older polders must be redesigned. … Finally, the full protection option for Area II embodies the construction of more than 200 km of new dykes as well as the upgrade of up to 290 km of dykes, depending on the sea level rise scenario. These dykes are partly required around the coastal lakes and partly along the rivers to protect adjacent coastal lowlands (3).

Area III

Depending on the sea level rise scenario, 13-52 km of new dykes, and the upgrade of 600-647 km of existing dykes are required. A substantial part of the urban area of Gdansk is in the hazard zone under average sea level rise and should be protected by a system of dykes, including along the water canals that connect the port and city with the sea. Moreover, the system should include storm gates at the mouth of Martwa Wisla and improvement of drainage and pumping systems. … Regular monitoring will be necessary on the most threatened coastal segments including those associated with the newest investments in the coastal zone, such as the landfall of optical fibre lines and gas pipelines (3).

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Poland.

  1. Furmańczykk, K. (2013)
  2. Przyscłość (2006), in: Furmańczykk, K. (2013)
  3. Pruszak and Zawadzka (2008)
  4. Ministry of the Environment and the National Fund for Environmental Protection and Water Managementof the Republic of Poland(2010)
  5. Pruszak (2000), in: Pruszak and Zawadzka (2008)
  6. Zawadzka (1999), in: Pruszak and Zawadzka (2008)

Share this article: