Cyprus
Energy
Energy in Cyprus in numbers
Wind power
Wind share of total electricity consumption in Cyprus was 3.4% by the end of 2010. Overall in the EU, in a normal wind year, installed wind capacity at the end of 2010 meets 5.3% of the EU’s electricity needs (10).
Vulnerabilities Cyprus
Demand
Energy demand for heating is projected to decrease during spring and winter in the near future (2050) in Cyprus. On the other hand, for the ‘warm’ period of the year (May–October), an increasing trend in energy consumption is evident as warmer conditions dominate by 2050 (15).
For the period 2021‐2050 it has been estimated that the growth of desalination capacity may result in an increase of electricity consumption that corresponds to 8% of the total electricity consumption for 2008 (12). In addition, the number of cooling days in this period will grow by 25 days. The additional energy needed for these two energy intensive sectors combined may correspond to 15.4% of the total electricity consumption in 2005. If other sectors of the economy are taken into consideration as well, the increase in energy demand could reach 20% or even 30% of the total electricity consumption in Cyprus for the period 2021‐2050 relative to the 1961‐1990 reference period (12).
Supply
Climate change may increase the risk of failures in the electricity transmission system due to higher temperatures, higher humidity and deposition of dust on insulators, thus leading to a higher need for cleaning insulators, which results in more frequent outage of generating units or transmission lines and decreases of the available power. During heat waves, sea water (which is the cooling agent of power generating units in Cyprus) is warmer, resulting to insufficient cooling of the generating units leading to less efficient – and therefore more costly – power generation (13).
Vulnerabilities Europe
Supply
The current key renewable energy sources in Europe are hydropower (19.8% of electricity generated) and wind. By the 2070s, hydropower potential for the whole of Europe is expected to decline by 6%, translated into a 20 to 50% decrease around the Mediterranean, a 15 to 30% increase in northern and eastern Europe and a stable hydropower pattern for western and central Europe (1,3,4). In areas with increased precipitation and runoff, dam safety may become a problem due to more frequent and intensive flooding events (5).
Read moreAdaptation strategies - Cyprus
The following adaptation measures have been recommended (13):
- Energy conservation and efficiency must be promoted. Implementation of proper carbon pricing of all energy forms and raising of public awareness, play a key role in order to encourage energy conservation;
- Long-term electricity generation plans have to be adjusted in order to account for additional capacity needed due to climate change, giving priority to renewable electricity generation.
References
The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Cyprus.
- Lehner et al. (2005), in: Alcamo et al. (2007)
- Metzger et al. (2004), in: Alcamo et al. (2007)
- Kirkinen et al. (2005), in: Anderson (ed.) (2007)
- Veijalainen and Vehviläinen (2006); Andréasson et al. (2006), in: Anderson (ed.) (2007)
- Anderson (ed.) (2007)
- Rothstein et al. (2006), in: Anderson (ed.) (2007)
- Alcamo et al., 2007
- EEA, JRC and WHO (2008)
- Behrens et al. (2010)
- European Wind Energy Association (2011)
- Zachariadis, 2010), in: Shoukri and Zachariadis (2012)
- Lange (2011), in: Shoukri and Zachariadis (2012)
- Shoukri and Zachariadis (2012)
- Van Vliet et al. (2012)
- Giannakopoulos et al. (2016)