Albania Albania Albania Albania

Coastal flood risk Albania

Vulnerabilities - Coastal flood risk in Albania

A sea level rise is projected up to 24 cm by 2050 and up to 61 cm by 2100. This will result in the gradual inundation of low lying coastal areas. The natural communities associated with such areas are expected to move inland (1).

In non-protected lagoons, accretion is expected to occur, following destruction of the low strands separating them from the sea. The formation of new wetlands is expected in Mati (1).

The population living in coastal areas, particularly in beach areas, is seriously threatened by the expected increase, in the sea level. Houses, hotels, roads and agricultural areas etc., situated in the lower zones of the Adriatic coastal line (excluding the territories under the effect of raising movements), will be flooded (1).

The beaches in the areas affected by land subsidence (those of Shëngjin, Kune-Vain, Tale, Patok, Ishëm), and a substantial number of fields (drained in the late 50’s and early 60’s.) will be swept over by floods. Likewise, these floods will find their way into important segments of the local and national roads (including a part of the new road Fushë Krujë-Lezhë running through the former Lac swamp land), potable water supply sources (located in Lezha and Lac plains), as well as many lodging and tourism structures which have been, and continue to be built along these beaches. Also, the floods will partially affect the beaches situated in the territories undergoing elevation (those of Durrës, Golem, Divjakë, Himarë, Borsh etc.), in addition to the tourism infrastructure (1).

The same lot is expected to affect the agricultural land (in the former swamps of Durrës, Myzeqe, Narta, Vrug etc.) as well as dwelling centers and rural infrastructure, which reach up to 50 cm above the sea level (1).

Global sea level rise


For the latest results: see Europe Coastal floods


For the latest results: see Europe Coastal floods

Extreme water levels - Global trends

More recent studies provide additional evidence that trends in extreme coastal high water across the globe reflect the increases in mean sea level (5), suggesting that mean sea level rise rather than changes in storminess are largely contributing to this increase (although data are sparse in many regions and this lowers the confidence in this assessment). It is therefore considered likely that sea level rise has led to a change in extreme coastal high water levels. It is likely that there has been an anthropogenic influence on increasing extreme coastal high water levels via mean sea level contributions. While changes in storminess may contribute to changes in sea level extremes, the limited geographical coverage of studies to date and the uncertainties associated with storminess changes overall mean that a general assessment of the effects of storminess changes on storm surge is not possible at this time.

On the basis of studies of observed trends in extreme coastal high water levels it is very likely that mean sea level rise will contribute to upward trends in the future.

Extreme waves - Future trends along the Mediterranean coast

Recent regional studies provide evidence for projected future declines in extreme wave height in the Mediterranean Sea (6). However, considerable variation in projections can arise from the different climate models and scenarios used to force wave models, which lowers the confidence in the projections (7).


The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Albania.

  1. Republic of Albania, Ministry of Environment (2002)
  2. Bindoff et al. (2007), in: IPCC (2012)
  3. Church and White (2011), in: IPCC (2012)
  4. Velicogna (2009); Rignot et al. (2011); Sørensen et al. (2011), all in: IPCC (2012)
  5. Marcos et al. (2009); Haigh et al. (2010); Menendez and Woodworth (2010), all in: IPCC (2012)
  6. Lionello et al. (2008), in: IPCC (2012)
  7. IPCC (2012)
  8. Cazenave et al. (2014)
  9. IPCC (2014)
  10. Watson et al. (2015)
  11. Yi et al. (2015)
  12. Church et al. (2013), in: Watson et al. (2015)
  13. Shepherd et al. (2012), in: Watson et al. (2015)
  14. Church et al. (2013), in: Watson et al. (2015)