Turkey Turkey Turkey Turkey

Previously in ClimateChangePost


At the end of this century, several heat waves per year will occur in the eastern Mediterranean and the Middle East. The number of heat wave days will increase by 20 - 130 days per year.

The global area of dryland is increasing rapidly. This was shown from data over the period 1948–2005, and seems to proceed towards the end of this century.

Studies have shown that in the eastern Mediterranean, the intensity, length and number of heat waves have increased by a factor of six to eight since the 1960s. Not all studies confirm

Across the Balkan Peninsula and Turkey climate change is particularly rapid, and especially summer temperatures are expected to increase strongly.

The Euphrates–Tigris Basin hosts the two important snow-fed rivers of the Middle East, and its water resources are critical for the hydroelectric power generation, irrigation and ...

Projected warming over Turkey’s climatic regions in 2100 under SRES A2 emission scenario is in the range of 2–5°C ...

Flash floods associated with intense and prolonged rainstorms are a common phenomenon, especially in coastal parts of Turkey ...

The likely effects of climate change on the water resources of Turkey have been investigated for 2040–2069 and 2070–2099 compared with 1961–1990 ...


I recommend

National plans/strategies for Turkey

  • Sixth National Communication of Turkey under the United Nations Framework Convention on Climate Change (UNFCCC) (2014). Download.

Reports/papers that focus on important Turkish topics

  • Climate Change: observations, projections and impacts. Downloads.

Reports/papers that present a sound overview for Europe

  • Eisenreich (2005). Climate change and the European water dimension. A report to the European water directors.
  • European Environment Agency (2005). Vulnerability and adaptation to climate change in Europe. Download.
  • European Environment Agency, JRC and WHO (2008). Impact of Europe’s changing climate – 2008 indicator-based assessment. Download.

Reports/papers that focus on specific topics, relevant for all of Europe

  • Agriculture: Rounsevell et al. (2005). Future scenarios of European agricultural land use II. Projecting changes in cropland and grassland. Download.
  • Agriculture: Fischer et al. (2005). Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Download.
  • Biodiversity: Thuiller et al. (2005). Climate change threats to plant diversity in Europe. Download.
  • Coastal erosion: Salman et al. (2004). Living with coastal erosion in Europe: sediment and space for sustainability. Download.
  • Droughts: Blenkinsop and Fowler (2007). Changes in European drought characteristics projected by the PRUDENCE regional climate models. Download.
  • Droughts: European Environment Agency (2009). Water resources across Europe – confronting water scarcity and drought. Download.
  • Forestry: Seppälä et al. (2009). Adaptation of forests and people to climate change. A global assessment report. Download.
  • Health: Kosatsky (2005). The 2003 European heat waves. Download.
  • Health: WHO (2008). Protecting health in Europe from climate change. Download.
  • Insurance and Business: Mills et al. (2005). Availability and affordability of insurance under climate change. A growing challenge for the U.S. Download.
  • Security and Crisis management: German Advisory Council on Global Change (2007). World in transition: Climate change as a security risk. Summary for policy-makers. Download.
  • Storms: Gardiner et al. (2010). Destructive storms in European forests: Past and forthcoming impacts. Download.
  • Storms: Pinto et al. (2007). Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Download.
  • Tourism: Deutsche Bank Research (2008). Climate change and tourism: Where will the journey lead? Download.

EU funded Research Projects

Forestry and Peatlands Turkey

Vulnerabilities - Overview

The increased vulnerability of forests (and people) with respect to climate change refers to several impacts (4,10):

  • Forest cover: conversion of forests to non-woody energy plantations; accelerated deforestation and forest degradation; increased use of wood for domestic energy.
  • Biodiversity: alteration of plant and animal distributions; loss of biodiversity; habitat invasions by non-native species; alteration of pollination systems; changes in plant dispersal and regeneration.
  • Productivity: changes in forest growth and ecosystem biomass; changes in species/site relations; changes in ecosystem nitrogen dynamics.
  • Health: increased mortality due to climate stresses; decreased health and vitality of forest ecosystems due to the cumulative impacts of multiple stressors; deteriorating health of forest-dependent peoples.
  • Soils and water: changes in the seasonality and intensity of precipitation, altering the flow regimes of streams; changes in the salinity of coastal forest ecosystems; increased probability of severe droughts; increased terrain instability and soil erosion due to increased precipitation and melting of permafrost; more/earlier snow melt resulting in changes in the timing of peak flow and volume in streams. The capacity of the forest ecosystem to purify water is an important service, obviating the cost of expensive filtration plants.
  • Carbon cycles: alteration of forest sinks and increased CO2 emissions from forested ecosystems due to changes in forest growth and productivity.
  • Tangible benefits of forests for people: changes in tree cover; changes in socio-economic resilience; changes in availability of specific forest products (timber, non-timber wood products and fuel wood, wild foods, medicines, and other non-wood forest products).
  • Intangible services provided by forests: changes in the incidence of conflicts between humans and wildlife; changes in the livelihoods of forest-dependent peoples (also a tangible benefit); changes in socio-economic resilience; changes in the cultural, religious and spiritual values associated with particular forests.


Increasing CO2 concentration can affect tree growth through increased photosynthetic rates and through improved water-use efficiency. There will be complex interactions, however: forest growth rates may well be increased in some cases by rising levels of atmospheric CO2, but rising temperatures, higher evaporation rates and lower rainfall may lower growth rates in other cases (2).

Non-timber products

Increasingly there are concerns about the productivity of non-timber products such as medicines and foods. Relatively little information is available in the scientific literature about the sustainable management of such products, and even less is known about their vulnerability to climate change (4).


Among all European regions, the Mediterranean appears most vulnerable to global change. Multiple potential impacts are related primarily to increased temperatures and reduced precipitation. The impacts included water shortages, increased risk of forest fires, northward shifts in the distribution of typical tree species, and losses of agricultural potential. Mountain regions also seemed vulnerable because of a rise in the elevation of snow cover and altered river runoff regimes (1).

Vulnerabilities – Subtropical dry forests in Europe

Subtropical dry forests occur in parts of Europe with at least eight months of over 10°C: parts of Spain, Italy, Greece, and Turkey. These regions have hot dry summers and humid mild winters, with annual rainfall in the 400–900 mm range (2).

Subtropical species are partly already well adapted to warm and dry climates. However, many subtropical species now exist in highly fragmented environments as islands of natural forest amongst oceans of agricultural land. Species at a particular location may not have access to new sites where they would be better adapted to the new climatic conditions. Less tolerant species may then decrease in abundance and hereby create for other, more tolerant resident species opportunities to become more abundant because of reduced competition (2).


Globally, based on both satellite and ground-based data, climatic changes seemed to have a generally positive impact on forest productivity since the middle of the 20th century, when water was not limiting (11).

Timber production in Europe

Climate change will probably increase timber production and reduce prices for wood products in Europe. For 2000–2050 a change of timber production in Europe is expected of -4 to +5%. For 2050–2100 an increase is expected of +2 to +13% (3).

Adaptation strategies - Forest management measures in general

Measures such as the establishment of migration corridors, connecting nature reserves, may assist the predicted poleward migration of tree species. Also, forest management should focus on reducing stress from external sources, such as extreme events and disturbances. Some additional management options reported for promoting adaptation are: high-quality genetic selection or selection of trees from specific varieties/origins; promotion of mixed-species forests; decrease of the area of monocultures; reducing the threats of pests and diseases; afforestation; fire prevention (8).

Adaptive management

The terms adaptation and adaptive management are often incorrectly used interchangeably. The former involves making adjustments in response to or in anticipation of climate change whereas the latter describes a management system that may be considered, in itself, to be an adaptation tactic (5). Adaptive management is a systematic process for continually improving management policies and practices by learning from the outcomes of operational programmes (6). It involves recognizing uncertainty and establishing methodologies to test hypotheses concerning those uncertainties; it uses management as a tool not only to change the system but to learn about the system (7).

Both the climate and forest ecosystems are constantly changing, and managers will need to adapt their strategies as the climate evolves over the long term. An option that might be appropriate today given expected changes over the next 20 years may no longer be appropriate in 20 years’ time. This will require a continuous programme of actions, monitoring and evaluation – the adaptive management approach described above (4).

There is a widespread assumption that the forest currently at a site is adapted to the current conditions, but this ignores the extent to which the climate has changed over the past 200–300 years, and the lag effects that occur in forests. As a result, replacement of a forest by one of the same composition may no longer be a suitable strategy (4).

Adaptation to climate change has started to be incorporated into all levels of governance, from forest management to international forest policy. Often these policies are not adopted solely in response to climate, and may occur in the absence of knowledge about longer-term climate change. They often serve more than one purpose, including food and fuel provision, shelter and minimizing erosion, as well as adapting to changing climatic conditions (8).

Socio-economic and political conditions have significant influences on vulnerability and adaptive capacity. Climate change projections are perceived by many forest managers as too uncertain to support long-term and potentially costly decisions that may be difficult to reverse. Similarly, uncertainty over future policy developments may also constrain action. Finance is a further barrier to implementing adaptation actions in the forest sector (9).


The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Turkey.

  1. Schröter et al. (2005)
  2. Fischlin (ed.) (2009)
  3. Karjalainen et al. (2003); Nabuurs et al. (2002); Perez-Garcia et al. (2002); Sohngen et al. (2001), in: Osman-Elasha and Parrotta (2009)
  4. Innes (ed.) (2009)
  5. Ogden and Innes (2007), in: Innes (ed.) (2009)
  6. BCMOF (2006a), in: Innes (ed.) (2009)
  7. Holling (1978); Lee (1993, 2001), all in: Innes (ed.) (2009)
  8. Roberts (ed.) (2009)
  9. Keskitalo (2008), in: Roberts (ed.) (2009)
  10. Kirilenko and Sedjo (2007)
  11. Boisvenue et al. (2006)