Europe Europe Europe Europe

Previously in ClimateChangePost

<

So far, 2014 is Europe’s hottest year on record. Research shows that anthropogenic climate change has made Europe’s warm year of 2014 at least 500 times more likely.

Future trends in storm surge level changes along the European coastline show an increase for Northern Europe and small or no changes for Southern Europe.

Very hot summers will become the ‘new normal’ much faster than most people expect. A recent study describes a grim picture for the world’s population regarding high summer temperatures.

Novel ways to enhance society’s resilience to natural disasters such as floods, heat waves or wildfires, in a newly published book of the EU-funded research project ENHANCE.

Trends of increasing numbers of flash floods in, for instance, Spain agree with the IPCC hypothesis about the increase in both torrential events and people’s vulnerability and exposure to floods.

Whether a river’s catchment in winter is dominated by rainfall or snow determines the impact of climate change on its peak flows. The impact depends on how the ratio between rainfall and snow changes.

One of the benefits of climate change is the use of Arctic sea for trans-Arctic shipping routes. Less ice in summer creates a shortcut between Pacific and Atlantic ports.

There is no such thing as a European response to climate change. Regions with the same increase in temperature and precipitation will have different impacts of climate change.

Green water under a blue sky. Water in the canals of Delft (the Netherlands) turned green this summer, due to warm water and high nutrients input.

The impact of climate change will be felt especially in the cities during hot summers, due to the urban heat island effect. Several measures can be taken though to ‘beat the heat’.

Disaster risk reduction and climate change adaptation in combination make societies more resilient to climate-fragility risks. Yet, a link between them has been more or less absent over the last years

Adverse environmental impacts associated with climate change can trigger displacement of an increased number of people. If people do migrate, this will mostly be internally within individual countries

Climate change may act as a threat multiplier for instability in some of the most volatile regions of the world. But there is no evidence of a strong relationship between warming and armed conflict.

Europe is surrounded by some of the most vulnerable regions to climate change. Migratory pressure at the European Union's borders and political instability and conflicts could increase in the future.

The changing climate may turn large parts of Europe into a suitable home for malarial mosquitoes. But a large-scale malaria epidemic is highly unlikely. The health infrastructure is too good for that.

Disease-transmitting ticks are expanding over Europe, consistent with observed warming trends. There is no evidence, however, of any associated changes in the distribution of tick-borne diseases.

Based on a presentation by Birgit Georgi (European Environment Agency) at the 4th Nordic Conference on Climate Change Adaptation in Bergen, Norway, August 2016.

Presented by Erik Kolstad (Uni Research Climate & Bjerknes Centre for Climate Research) at the 4th Nordic Conference on Climate Change Adaptation in Bergen, Norway, August 2016.

Based on a presentation by Per Sanderud and a discussion with Hege Hisdal and Christina Beisland of NVE at the 4th Nordic Conference on Climate Change Adaptation in Bergen, Norway, August 2016.

More heat-related deaths in summer may not balance less cold-related deaths in winter. In fact, higher winter temperature volatility and an ageing population may increase the number of winter deaths.

Current wildfire risk calls for more than well-equipped fire fighting units. Investments are needed in plane and satellite monitoring of forests, early warning, and more resilience to fires.

The world relies on the available surface water resources for electricity generation. How will global warming affect the potential for hydropower and cooling water?

Wildfire risk in northern Europe is much less than in the south. In northern Europe, wildfires are rare: the percentage of forestland burnt annually is less than 0.05%, compared with 0.55% for Spain.

The frequency of droughts will increase in the next several decades. In addition, population will grow. Both impacts have been assessed. The conclusion: climate change plays the primary role.

The impacts of climate change on natural hazards cast their shadows in the increasing numbers of wildfires. The causal connection is hard to deny.

The increase in intensity of heat waves in combination with high tropospheric ozone concentrations represents the greatest direct risk that climate change poses to people’s health in Europe.

50% of the deaths as a result of the European summer heat wave of 2003 may be associated with ozone exposure rather than the heat itself, research has shown.

The prolongation and intensification of the thermal growing season offers several benefits for northern European forestry and agriculture. In southern Europe, negative impacts dominate.

Increasing the level of flood protection may be cost-effective, but is not sustainable in the long term. A higher level of flood protection results in the loss of flood memory.

Looking at the combination of extreme events, entire Europe could face a progressive increase in overall climate exposure, with a prominent spatial gradient towards southwestern regions

Increasing exposure to flooding is the main cause of the steeply rising trend in global river flood losses over the past decades.

Forest management can mitigate the effects of climate change. Climate and forest management interact and affect streamflow differentially.

The effect of climate change on extreme events extends back several decades. An example is the record- breaking hot summer of 1997/1998 in Australia.

A new field of science called “extreme event attribution” allows for answering the question: did climate change play a role in
this specific extreme event?

The battle against climate change will be a race against the clock. Engineers will have to fight on two fronts: towards a sustainable energy system and against projected impacts.

It is yet unclear how climate change may affect the number of severe storms on the Atlantic Ocean and in the European coastal zone.

Air pollution is a serious health concern in many parts of the world. Projections of air quality changes over Europe under climate change are highly uncertain, however.

Under a moderate scenario of climate change, by 2050 0.5 to 3.1 billion people are exposed to an increase in water scarcity solely due to climate change.

The heat wave in 2010 was likely the hottest summer in the last 500 years in eastern Europe. It was both due to natural climate variability and anthropogenic climate change.

An interesting ‘trade-off’ is the effect of global warming on the number of heat-related and cold-related deaths. What will be the net effect of hotter summers and warmer winters?

Over the last years, climate-driven changes such as large-scale floods have increased the volume of water on land. This increase slowed down sea level rise.

Climate change will have an impact on river flood risk, but to what extent? One thing is clear: the impact is highly uncertain.

The impacts of a +2°C global warming on extreme floods and hydrological droughts have been assessed for Europe for 1 in 10 and 1 in 100 year events.

Maize and soybean are among the most important food crops worldwide. Global warming reduces growing season length and yields for both crops.

The earlier green-up of vegetation in Europe amplifies spring warming, especially the frequency and intensity of spring heat waves, according to a recent study.

At many places climate change both increases droughts and heavy rainfall. Too little and too much water are part of the same problem. They may be part of the same solution too

Urban centers worldwide are racing to bolster themselves and their residents against rising sea levels

Sea level rise over the next decades is not an immediate, catastrophic threat to many marshes: marshes will survive in place under relatively fast rates of sea level rise

The global area of dryland is increasing rapidly. This was shown from data over the period 1948–2005, and seems to proceed towards the end of this century.

Wind energy potential more likely than not will increase over Northern and Central Europe. For Southern Europe, a likely decrease of mean annual wind energy potential is projected.

Lake summer surface water temperatures are warming significantly, with a mean trend of 0.34°C per decade, across 235 globally distributed lakes.

Estimates of potential increase in annual burned areas in Europe under a high-end scenario of climate change show an increase of about 200% by 2090

The larger Mediterranean Basin will have warmer and dryer climate conditions at the end of this century. Desertification in the Mediterranean region

The results of a European-wide study show that forest management cannot keep pace with the projected change in species suitability under climate change.

Estimates based on a combination of climate and flooding models indicate that river floods affect some 216,000 people every year in Europe. The estimated annual damage for Europe is 5.3 B€.

Climatic conditions might become more favorable for tourism in the north of Europe and less so in the south. Climate model projections for 2100

Flood insurance differs widely in scope and form across Europe. There seems to be little appetite for harmonization of flood insurance arrangements across the EU

Drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate, resulting in a threat to global forests unlike any in recorded history.

Recently, the American Meteorological Society published a large number of studies on extreme events in 2014, focused on the question whether these can be (partly) attributed to climate change.

Bumblebee species seem to fail to move to the north of Europe and North America in response to global warming whereas they lose habitats at the southern range

What measures may be effective in reducing the urban heat island effect and cool down cities during heat waves? A comparison of recent insights from scientific studies

Allergenic diseases caused by pollen may appear earlier in the year and may also increase. An example of the latter is the invasion of common ragweed (a native in North America) into Europe since the

Climate change is considered a large threat to especially montane species. These species often inhabit narrow elevational ranges

Five large-scale homogeneous regions in Europe have been identified in terms of flood regimes, based on the longest available flow series from across Europe

Many impact studies assume that climate change results in changing daily minimum and maximum temperatures by the same amount and in the same direction. However, on local scales

Extreme heat waves have an impact on western European electricity supply due to the increased electricity demand for cooling and the power limitation of thermoelectric plants

In a warmer future climate, Western Europe will see larger impacts from severe Autumn storms. Not only their frequency will increase, but also their intensity and the area they affect.

How much sea level rise is to be expected at the upper limit of current IPCC scenarios? This question has been dealt with for northern Europe

In high-latitude regions of the Earth, temperatures have risen 0.6 °C per decade, twice as fast as the global average. The resulting thaw of frozen ground

According to satellite altimetry-based data anthropogenic global warming has resulted in global mean sea-level rise of 3.3 ± 0.4 mm/year over the period 1994-2011

Specific individual extreme weather events cannot be attributed to climate change. It has been shown, however, that the overall probability of climate change having an effect on extreme events can be

With respect to high-frequency flood zones, including exposure to both coastal and river floods, in 2000 about 30% of the global urban land was located in these zones; by 2030, this will reach 40%.

There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature

For Canadian cities, four major categories of mitigation strategies and measures have been identified: Greening measures: all measures that can increase

Human influence can account for almost 100% of the changes in future hydrological drought in areas such as Asia, Middle East and North-Africa (Mediterranean).

Climate change threatens one in six species (16%) globally if we follow our current, business-as-usual trajectory

The overall enhancement on summery tourist comfort in north-western European countries and the overall degradation in the Mediterranean could lead to

The impact of climate change on foodborne parasites is complicated and provides no easy answers.

European wine farms show considerable potential to improve their economic performance, and thereby ease their situation in a global change scenario.

future changes in wind power potential are weak or non-significant over a large part of Europe: changes in wind power potential will remain within ±15% and ±20% by mid and late century respectively.

Projected climate changes suggest increased drying, driven primarily by increases in evapotranspiration. This will likely have significant ramifications for globally important regions

The latest high-resolution future climate simulations for Europe (from the EURO-CORDEX program) refer to a horizontal resolution of 12.5 km. The first results address changes

Future climate change will affect recharge rates and, in turn, the depth of groundwater levels and the amount of available groundwater.

The adaptation potential of European agriculture in response to climate change has been assessed for a number of crops. It was shown that adaptation potential is high for maize

Global demand for food is expected to increase by at least 50% from 2010 to 2050 mainly as a result of population growth and a shift towards a more `westernized' diet

With 25% of the global wheat area and 29% of global wheat production, Europe is the largest producer of wheat. The increased occurrence and magnitude of adverse and extreme agroclimatic events

The impact of global warming on the cultural world heritage through sea level rise has been estimated for the next 2000 years.

In the past decade, winter consequences and flood events accounted for 96% of the total rail and road networks costs in the Alps, 92% in mid-Europe and 91% across EUR29.

Railways are the losers of climate change thanks to their expensive—and therefore vulnerable—infrastructure and their complex vehicle routing system and high safety standards.

A recent analysis indicates that the planet has warmed most where scientists are watching least. The recent slowdown in warming seems to be half as big as previously thought.

Global yield impacts of climate change and adaptation have been evaluated by analysing a data set of more than 1,700 published simulations for three crops: wheat, rice and maize.

On the Rhine–Main–Danube corridor no decrease in the performance of inland waterway transport due to extreme weather events is expected till 2050.

Current global glacier volume is projected to reduce by 29 - 41% over the period 2006–2100. Scandinavia may lose more than 75% of its current volume

Water scarcity and climate change are overall not found to have an important association with armed conflict, especially if compared to poverty and dysfunctional institutions.

Opportunities for integrating climate change into peacebuilding refer to socio-economic recovery, politics and governance, security and rule of law, and human rights.

Projected impacts indicate increased fish productivity at high latitudes and decreased productivity at low/mid latitudes

Climate change will affect future flow and thermal regimes of rivers. This will directly affect freshwater habitats and ecosystem health.

Risk management instruments in agriculture, such as crop insurance and disaster assistance programme, and especially how they are designed, will affect incentives to adapt.

Assuming protection against a 100-year flood event, EU annual river flood damage is estimated to increase from €5.5 billion now to €98 billion in 2100.

Precipitation on future days, where average daily temperature is below freezing, decreases in large parts of Europe in a future warmer climate.

The yield decreasing effect of climate change in Europe is projected to be compensated and partially superseded by higher atmospheric CO2 concentration and technology development.

For Europe, by the end of the century, irrigation water demand is projected to decrease for Eastern Europe under scenarios for moderate climate change.

In Europe, 1-day and 5-day precipitation events that occurred on average once in 5, 10 and 20 years in the 1950s and 1960s generally became more common during the period 1951–2010.

The average poleward shift in recorded incidences of crop pests and pathogens since 1960 is 2.2 ± 0.8 km/year for the Northern Hemisphere and 1.7 ± 1.7 km/year for the Southern Hemisphere.

Fire policy that focuses on suppression only delays the inevitable, promising more dangerous and destructive future forest fires.

There are perhaps five wheat and three maize growing regions likely to be both exposed to worse droughts and a reduced capacity to adapt.

The urban heat island effect has been quantified for all cities in 38 European countries. It was shown that this effect varies over the seasons.

21st century climate change increases global all-cause premature mortalities associated with PM2.5 by approximately 100,000 deaths and respiratory disease mortality

The effects and the relevance of gradual climate change on the probability of power outages and blackouts are difficult to quantify. It has been stated that by 2040 capacity reductions of 13–19 %

Climate change and extreme weather events represent a real physical threat to the oil and gas sector, particularly in low-lying coastal areas and areas exposed to extreme weather events.

Flood frequency increases in West and Northwest Europe, including the UK, Ireland, the Low Countries and most of France. In contrast, flood frequency decreases in many regions of

At the regional level, the impact of climate change was assessed for Europe combining indicators of climatic and non-climatic change ...

The expected value of European forest land is expected to decrease owing to the decline of economically valuable species in the absence of effective countermeasures ...

From the available scientific literature the impact of climate change on security is yet unclear ...

Problems with efficient dewatering following heavy rainfall events are not uncommon already today, e.g. because of urbanization beyond the system capacity ...

Windstorm losses are expected to reach unseen magnitudes, which for some countries (e.g. Germany) may exceed 200% of the strongest event in present day climate simulations ...

Substantial reductions in potential groundwater recharge are projected for the 21st century in southern Europe and increases in northern Europe ...

The economic impacts of climate change have been estimated for a global mean temperature rise of +2°C and +4°C for 27 European countries ...

Changes in dry and wet spell characteristics in Europe have been projected for 2021–2050 compared with 1961–1990 ...

During the 2001–2010 decade, 500-year-long records of highest air temperature were likely broken over 65% of Europe, including ...

The direct and indirect costs of sea level rise for Europe have been modelled for a range of sea level rise scenarios for the 2020s and 2080s. The results show ...

Climate change will impact thermoelectric power production in Europe through a combination of increased water temperatures and ...

From an assessment of the implications of climate change for future flood damage and people exposed by floods in Europe it was concluded ...

Climate change may have a net positive effect on the overall European potential for tourism ...

>

Flash floods and urban flooding: European scale

Vulnerabilities - flash floods due daily rainfall extremes

Flash floods caused on average 50 casualties per year in Europe, 70% of the total number of deaths due to floods (8). The fatalities mainly occur in countries surrounding the Mediterranean Sea, where large population density exists at the coastal areas due to the important urbanization processes in this area during the last decades (9). Particularly in Spain, almost 90% of the victims due to floods are caused by flash floods (10). 


Changes in river flow extremes at a +2°C global warming are currently of central interest as this is the global target defined by policymakers to lower international greenhouse gases emissions. The impacts of a +2°C global warming on extreme floods (due to daily rainfall extremes) have been assessed for Europe for 1 in 10 and 1 in 100 year events. This was done for a combination of different models (global and regional climate models, hydrological models); the changes in floods were compared with the reference period 1971 - 2000 (2).

For floods (due to daily rainfall extremes) the results indicate a clear North to South gradient in future changes in flood magnitude:

  • South the 60°N line: a strong increase in flood magnitudes, due to changes in extreme rainfall, except for some regions in Bulgaria, Czech Republic, Poland, the western Balkans, the Baltic countries, and southern Spain where no significant changes can be detected. Floods are even increasing in areas such as southern Mediterranean where the average discharge is projected to decrease (3).
  • Above the 60°N line: a relatively strong decrease in flood magnitude in parts of Finland, NW Russia and North of Sweden with the exception of southern Sweden and some coastal areas in Norway where increases in floods are projected. Projections of decreasing flood magnitudes are mainly due to the decreases in snowpack in areas where most of the floods are caused by spring snowmelt in combination with rainfall. Increases in flood magnitude in Scandinavia are mainly seen in coastal areas where the rain-fed floods will increase (2). 

Vulnerabilities - Urban drainage

An urban drainage system may damp or amplify changes in precipitation, depending on the system characteristics. The combined impact of climate change and increased urbanisation in some parts of the North Sea region could result in as much as a four-fold increase in sewer overflow volumes (6). For Roskilde (Denmark), for instance, a 40% increase in design rainfall intensities was found to increase the current level of damage costs related to sewer flooding by a factor of 10 (4). The actual change in cost will depend on catchment and sewer system characteristics. The impacts of climate change on sewer flood and overflow frequencies and volumes show wide variation. Studies indicate a range from a four-fold increase to as low as a 5 % increase, depending on the system characteristics (5).


Floods and overflows occur when runoff or sewer flow thresholds are exceeded. Given that the response of the sewer system to rainfall may be highly non-linear, the changes in the sewer response may be much stronger than the changes in rainfall. And the impact ranges can even by wider when studying the impacts of sewer overflows on receiving rivers. Sewer overflow mainly occurs in summer and as models project the likelihood of lower river flow in summer in northwestern Europe, dilution effects in the receiving water might be less, thus increasing impacts on river water quality and aquatic life (6). Changes other than those related to climate may also occur in urban areas, such as increased urbanization and more pavement surfaces, and affect or strengthen urban drainage impacts (7).

Adaptation strategies

At many places climate change both increases droughts and heavy rainfall. Too little and too much water are part of the same problem. They may be part of the same solution too: by redesigning the storm water infrastructure of cities.  

When it rains hard, the sudden volume of water can overwhelm urban drainage systems and lead to flash flooding. Slowing down this discharge and collecting part of it in reservoirs can overcome this. In fact, by storing it we can safe the water for the future, and we can turn troublesome storm water into a resource. Vegetation planted in and around the reservoir purifies the water because the pollutants become trapped in the soil or the roots, and contaminants are taken up by tissues or even broken down into less harmful substances. The cleaner water can then be further purified and allowed to percolate into underground aquifers beneath the city, where it can serve as a drinking-water source during droughts (1).


The necessary adjustments can be fit in the city’s infrastructure quite easily. By digging a trench, for instance, alongside the pavement filled with gravel and soil, and planted with trees. The trench acts as an intermediary step between the storm drain and the sewer, a sponge, and slows and purifies the runoff to protect the city. There’s an extra advantage to more trees in the cities: their shade relieves the heat during summers (1).

In addition to these adjustments of the urban drainage system, several other measures can be taken that strengthen these positive effects of reducing urban flooding and increasing water storage in aquifers: pervious paving increase infiltration, and green roofs capture storm water, allowing much of it to evaporate before directing the filtered excess into the city’s drainage system (1).

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Europe.

  1. Gaines (2016)
  2. Roudier et al. (2016)
  3. Greuell et al. (2015), in: Roudier et al. (2016)
  4. Arnbjerg-Nielsen and Fleischer (2009), in: Willems and Lloyd-Hughes (2016)
  5. Willems et al. (2012a, b), in: Willems and Lloyd-Hughes (2016)
  6. Willems and Lloyd-Hughes (2016)
  7. Olsson et al. (2010), in: Willems and Lloyd-Hughes (2016)
  8. Barredo (2007), in: Pino et al. (2016) 
  9. Llasat et al. (2010), in: Pino et al. (2016)
  10. Olcina and Ayala-Carcedo (2002), in: Pino et al. (2016)
Close