Croatia Croatia Croatia Croatia

Health Croatia

Vulnerabilities - Tick-borne diseases

In Croatia the tick-borne virus meningoencephalitis, caused by a forest ticks, occurs seasonally from spring to autumn, which correlates to tick activities. A warmer and longer autumn time contributes to extension of tick activities and mild winters favour the tick survival. The rise of the annual mean temperature shifts altitudinal limit for tick occurrence. Little is known about the distribution of Lyme boreliosis, because this disease clarified only recently has been monitored for ten years only (1).

Vulnerabilities - Mosquito-borne diseases

The coastal area of Croatia might be threatened by malaria. The “tiger” moth, which spreads from South-Eastern Asia and Oceania to other continents by trade and transport of used tyres and is a proved viral vector causing the fatal Dengue hemorrhagic fever, has been found for the first time in Croatia in October 2004 (1).

While climatic factors may favor autochthonous transmission, increased vector density, and accelerated parasite development, other factors (socioeconomic, building codes, land use, treatment, etc) limit the likelihood of climate related re-emergence of malaria in Europe (2).

Vulnerabilities - Sand-fly-borne diseases

Leishmaniasis is a protozoan parasitic infection caused by Leishmania infantum that is transmitted to human beings through the bite of an infected female sandfly. Sandfly distribution in Europe is south of latitude 45⁰N and less than 800 m above sea level, although it has recently expanded as high as 49⁰N. Currently, sandfly vectors have a substantially wider range than that of L infantum, and imported cases of infected dogs are common in central and northern Europe. Once conditions make transmission suitable in northern latitudes, these imported cases could act as plentiful source of infections, permitting the development of new endemic foci. Conversely, if climatic conditions become too hot and dry for vector survival, the disease may disappear in southern latitudes. Thus, complex climatic and environmental changes (such as land use) will continue to shift the dispersal of leishmaniasis in Europe (2).

Vulnerabilities - Air quality

The consequence of warmer summers and an extended vegetation season will be the rise in the number of patients becoming sensitized to and affected by respiratory allergies: seasonal allergic rhinitis and allergic asthma caused by pollen from the trees, grasses and weeds. It is estimated that every tenth inhabitant of Croatia suffers from pollen allergy caused by Ambrosia (1).

Vulnerabilities - Floods

Floods are the most common natural disaster in Europe. The adverse human health consequences of flooding are complex and far-reaching: these include drowning, injuries, and an increased incidence of common mental disorders. Anxiety and depression may last for months and possibly even years after the flood event and so the true health burden is rarely appreciated (3).

Effects of floods on communicable diseases appear relatively infrequent in Europe. The vulnerability of a person or group is defined in terms of their capacity to anticipate, cope with, resist and recover from the impact of a natural hazard. Determining vulnerability is a major challenge. Vulnerable groups within communities to the health impacts of flooding are the elderly, disabled, children, women, ethnic minorities, and those on low incomes (3).

Adaptation strategies - General - Heatwaves

The outcomes from the two European heat waves of 2003 and 2006 have been summarized by the IPCC (4) and are summarized below. They include public health approaches to reducing exposure, assessing heat mortality, communication and education, and adapting the urban infrastructure.


1. Public health approaches to reducing exposure

A common public health approach to reducing exposure is the Heat Warning System (HWS) or Heat Action Response System. The four components of the latter include an alert protocol, community response plan, communication plan, and evaluation plan (5). The HWS is represented by the multiple dimensions of the EuroHeat plan, such as a lead agency to coordinate the alert, an alert system, an information outreach plan, long-term infrastructural planning, and preparedness actions for the health care system (6).

The European Network of Meteorological Services has created Meteoalarm as a way to coordinate warnings and to differentiate them across regions (7). There are a range of approaches used to trigger alerts and a range of response measures implemented once an alert has been triggered. In some cases, departments of emergency management lead the endeavor, while in others public health-related agencies are most responsible (8).

2. Assessing heat mortality

Assessing excess mortality is the most widely used means of assessing the health impact of heat-related extreme events.

3. Communication and education

One particularly difficult aspect of heat preparedness is communicating risk. In many locations populations are unaware of their risk and heat wave warning systems go largely unheeded (9). Some evidence has even shown that top-down educational messages do not result in appropriate resultant actions (10).

More generally, research shows that communication about heat preparedness centered on engaging with communities results in increased awareness compared with top-down messages (11).

4. Adapting the urban infrastructure

Several types of infrastructural measures can be taken to prevent negative outcomes of heat-related extreme events. Models suggest that significant reductions in heat-related illness would result from land use modifications that increase albedo, proportion of vegetative cover, thermal conductivity, and emissivity in urban areas (12). Reducing energy consumption in buildings can improve resilience, since localized systems are less dependent on vulnerable energy infrastructure. In addition, by better insulating residential dwellings, people would suffer less effect from heat hazards. Financial incentives have been tested in some countries as a means to increase energy efficiency by supporting those who are insulating their homes. Urban greening can also reduce temperatures, protecting local populations and reducing energy demands (13).

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Croatia.

  1. Republic of Croatia, Ministry of Environmental Protection, Physical Planning and Construction (2006)
  2. Semenza and Menne (2009)
  3. Hajat et al. (2003)
  4. IPCC (2012)
  5. Health Canada (2010), in: IPCC (2012)
  6. WHO (2007), in: IPCC (2012)
  7. Bartzokas et al. (2010), in: IPCC (2012)
  8. McCormick (2010b), in: IPCC (2012)
  9. Luber and McGeehin (2008), in: IPCC (2012)
  10. Semenza et al. (2008)), in: IPCC (2012)
  11. Smoyer-Tomic and Rainham (2001), in: IPCC (2012)
  12. Yip et al. (2008); Silva et al. (2010), both in: IPCC (2012)
  13. Akbari et al. (2001), in: IPCC (2012)
x